green numbers give full details.
|
back to list of philosophers
|
expand these ideas
Ideas of Kenneth Kunen, by Text
[American, fl. 1980, At the University of Texas, Austin.]
§1.10
|
p.29
|
13038
|
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y)
|
§1.5
|
p.10
|
13030
|
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y)
|
§1.5
|
p.10
|
13029
|
Set Existence: ∃x (x = x)
|
§1.5
|
p.11
|
13031
|
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ)
|
§1.6
|
p.12
|
13032
|
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z)
|
§1.6
|
p.12
|
13034
|
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y)
|
§1.6
|
p.12
|
13033
|
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A)
|
§1.6
|
p.15
|
13036
|
Choice: ∀A ∃R (R well-orders A)
|
§1.7
|
p.19
|
13037
|
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x)
|
§3.4
|
p.100
|
13039
|
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y)))
|
§6.3
|
p.170
|
13040
|
Constructibility: V = L (all sets are constructible)
|
2012
|
The Foundations of Mathematics (2nd ed)
|
I.7.1
|
p.24
|
18465
|
An 'equivalence' relation is one which is reflexive, symmetric and transitive
|