structure for 'Mathematics'    |     alphabetical list of themes    |     unexpand these ideas

6. Mathematics / C. Sources of Mathematics / 7. Formalism

[maths is the consequences of a set of symbols]

24 ideas
Formalism misunderstands applications, metatheory, and infinity [Frege, by Dummett]
     Full Idea: Frege's three main objections to radical formalism are that it cannot account for the application of mathematics, that it confuses a formal theory with its metatheory, and it cannot explain an infinite sequence.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §86-137) by Michael Dummett - Frege philosophy of mathematics
     A reaction: The application is because we don't design maths randomly, but to be useful. The third objection might be dealt with by potential infinities (from formal rules). The second objection sounds promising.
Only applicability raises arithmetic from a game to a science [Frege]
     Full Idea: It is applicability alone which elevates arithmetic from a game to the rank of a science.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §91), quoted by Stewart Shapiro - Thinking About Mathematics 6.1.2
     A reaction: This is the basic objection to Formalism. It invites the question of why it is applicable, which platonists like Frege don't seem to answer (though Plato himself has reality modelled on the Forms). This is why I like structuralism.
Formalism fails to recognise types of symbols, and also meta-games [Frege, by Brown,JR]
     Full Idea: Early formalism (Thomae etc) was crushed by Frege: first, mathematics must be about classes of symbols (abstract types), not the symbols themselves (the tokens); second, games may be meaningless, but meta-games are not.
     From: report of Gottlob Frege (Grundlagen der Arithmetik (Foundations) [1884]) by James Robert Brown - Philosophy of Mathematics Ch.5
     A reaction: Brown goes on to show how Hilbert revived the formalist project. A really austere formalist view of mathematics clearly seems to be missing something basic, either in physical nature, or in the world of ideas.
Hilbert said (to block paradoxes) that mathematical existence is entailed by consistency [Hilbert, by Potter]
     Full Idea: Hilbert proposed to circuvent the paradoxes by means of the doctrine (already proposed by Poincaré) that in mathematics consistency entails existence.
     From: report of David Hilbert (On the Concept of Number [1900], p.183) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 19 'Exist'
     A reaction: Interesting. Hilbert's idea has struck me as weird, but it makes sense if its main motive is to block the paradoxes. Roughly, the idea is 'it exists if it isn't paradoxical'. A low bar for existence (but then it is only in mathematics!).
The subject matter of mathematics is immediate and clear concrete symbols [Hilbert]
     Full Idea: The subject matter of mathematics is the concrete symbols themselves whose structure is immediately clear and recognisable.
     From: David Hilbert (On the Infinite [1925], p.192)
     A reaction: I don't think many people will agree with Hilbert here. Does he mean token-symbols or type-symbols? You can do maths in your head, or with different symbols. If type-symbols, you have to explain what a type is.
The grounding of mathematics is 'in the beginning was the sign' [Hilbert]
     Full Idea: The solid philosophical attitude that I think is required for the grounding of pure mathematics is this: In the beginning was the sign.
     From: David Hilbert (works [1900]), quoted by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Why did people invent those particular signs? Presumably they were meant to designate something, in the world or in our experience.
Hilbert substituted a syntactic for a semantic account of consistency [Hilbert, by George/Velleman]
     Full Idea: Hilbert replaced a semantic construal of inconsistency (that the theory entails a statement that is necessarily false) by a syntactic one (that the theory formally derives the statement (0 =1 ∧ 0 not-= 1).
     From: report of David Hilbert (works [1900]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Finding one particular clash will pinpoint the notion of inconsistency, but it doesn't seem to define what it means, since the concept has very wide application.
Numbers are just verbal conveniences, which can be analysed away [Russell]
     Full Idea: Numbers are nothing but a verbal convenience, and disappear when the propositions that seem to contain them are fully written out.
     From: Bertrand Russell (Is Mathematics purely Linguistic? [1952], p.301)
     A reaction: This is the culmination of the process which began with his 1905 theory of definite descriptions. The intervening step was Wittgenstein's purely formal account of the logical connectives.
Formalists say maths is merely conventional marks on paper, like the arbitrary rules of chess [Russell]
     Full Idea: The Formalists, led by Hilbert, maintain that arithmetic symbols are merely marks on paper, devoid of meaning, and that arithmetic consists of certain arbitrary rules, like the rules of chess, by which these marks can be manipulated.
     From: Bertrand Russell (My Philosophical Development [1959], Ch.10)
     A reaction: I just don't believe that maths is arbitrary, and this view pushes me into the arms of the empiricists, who say maths is far more likely to arise from experience than from arbitrary convention. The key to maths is patterns.
Formalism can't apply numbers to reality, so it is an evasion [Russell]
     Full Idea: Formalism is perfectly adequate for doing sums, but not for the application of number, such as the simple statement 'there are three men in this room', so it must be regarded as an unsatisfactory evasion.
     From: Bertrand Russell (My Philosophical Development [1959], Ch.10)
     A reaction: This seems to me a powerful and simple objection. The foundation of arithmetic is that there are three men in the room, not that one plus two is three. Three men and three ties make a pattern, which we call 'three'.
Formalism is hopeless, because it focuses on propositions and ignores concepts [Ramsey]
     Full Idea: The hopelessly inadequate formalist theory is, to some extent, the result of considering only the propositions of mathematics and neglecting the analysis of its concepts.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §1)
     A reaction: You'll have to read Ramsey to see how this thought pans out, but it at least gives a pointer to how to go about addressing the question.
Tarski's theory of truth shifted the approach away from syntax, to set theory and semantics [Feferman/Feferman on Tarski]
     Full Idea: Tarski's theory of truth has been most influential in eventually creating a shift from the entirely syntactic way of doing things in metamathematics (promoted by Hilbert in the 1920s, in his theory of proofs), towards a set-theoretical, semantic approach.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Feferman / Feferman - Alfred Tarski: life and logic Int III
Formalism says maths is built of meaningless notations; these build into rules which have meaning [Quine]
     Full Idea: The formalism of Hilbert keeps classical maths as a play of insignificant notations. Agreement is found among the rules which, unlike the notations, are quite significant and intelligible.
     From: Willard Quine (On What There Is [1948], p.15)
Formalism is a bulwark of logical positivism [Musgrave]
     Full Idea: Formalism is a bulwark of logical positivist philosophy.
     From: Alan Musgrave (Logicism Revisited [1977], §5)
     A reaction: Presumably if you drain all the empirical content out of arithmetic and geometry, you are only left with the bare formal syntax, of symbols and rules. That seems to be as analytic as you can get.
Formalism seems to exclude all creative, growing mathematics [Musgrave]
     Full Idea: Formalism seems to exclude from consideration all creative, growing mathematics.
     From: Alan Musgrave (Logicism Revisited [1977], §5)
     A reaction: [He cites Lakatos in support] I am not immediately clear why spotting the remote implications of a formal system should be uncreative. The greatest chess players are considered to be highly creative and imaginative.
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
For nomalists there are no numbers, only numerals [Brown,JR]
     Full Idea: For the instinctive nominalist in mathematics, there are no numbers, only numerals.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: Maybe. A numeral is a specific sign, sometimes in a specific natural language, so this seems to miss the fact that cardinality etc are features of reality, not just conventions.
The most brilliant formalist was Hilbert [Brown,JR]
     Full Idea: In mathematics, the most brilliant formalist of all was Hilbert
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: He seems to have developed his fully formalist views later in his career. See Mathematics|Basis of Mathematic|Formalism in our thematic section. Kreisel denies that Hilbert was a true formalist.
Does some mathematics depend entirely on notation? [Brown,JR]
     Full Idea: Are there mathematical properties which can only be discovered using a particular notation?
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 6)
     A reaction: If so, this would seem to be a serious difficulty for platonists. Brown has just been exploring the mathematical theory of knots.
The formalist defence against Gödel is to reject his metalinguistic concept of truth [Potter]
     Full Idea: Gödel's theorem does not refute formalism outright, because the committed formalist need not recognise the metalinguistic notion of truth to which the theorem appeals.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 45 'Log')
     A reaction: The theorem was prior to Tarski's account of truth. Potter says Gödel avoided explicit mention of truth because of this problem. In general Gödel showed that there are truths outside the formal system (which is all provable).
Game Formalism has no semantics, and Term Formalism reduces the semantics [Linnebo]
     Full Idea: Game Formalism seeks to banish all semantics from mathematics, and Term Formalism seeks to reduce any such notions to purely syntactic ones.
     From: Řystein Linnebo (Philosophy of Mathematics [2017], 3.3)
     A reaction: This approach was stimulated by the need to justify the existence of the imaginary number i. Just say it is a letter!
Formalism is unconstrained, so cannot indicate importance, or directions for research [Friend]
     Full Idea: There are not enough constraints in the Formalist view of mathematics, so there is no way to select a direction for trying to develop mathematics. There is no part of mathematics that is more important than another.
     From: Michčle Friend (Introducing the Philosophy of Mathematics [2007], 6.6)
     A reaction: One might reply that an area of maths could be 'important' if lots of other areas depended on it, and big developments would ripple big changes through the interior of the subject. Formalism does, though, seem to reduce maths to a game.