structure for 'Formal Logic'    |     alphabetical list of themes    |     unexpand these ideas

4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL

[statements treated as true without question]

17 ideas
In mathematics certain things have to be accepted without further explanation [Plato]
     Full Idea: The practitioners of maths take certain things as basic, and feel no further need to explain them.
     From: Plato (The Republic [c.374 BCE], 510c)
Axioms are the underlying principles of everything, and who but the philosopher can assess their truth? [Aristotle]
     Full Idea: Axioms are more general, and the principles of all things. If this does not belong to the philosopher, who else will have the job of considering truth and falsity in their case?
     From: Aristotle (Metaphysics [c.324 BCE], 0997a09)
The axioms of mathematics are part of philosophy [Aristotle]
     Full Idea: A single science, that of the philosopher, also covers the axioms of mathematics.
     From: Aristotle (Metaphysics [c.324 BCE], 1005a15)
An axiom is a principle which must be understood if one is to learn anything [Aristotle]
     Full Idea: An axiom is a principle which must be grasped if anyone is going to learn anything whatever.
     From: Aristotle (Posterior Analytics [c.327 BCE], 72a17)
Chrysippus has five obvious 'indemonstrables' of reasoning [Chrysippus, by Diog. Laertius]
     Full Idea: Chrysippus has five indemonstrables that do not need demonstration:1) If 1st the 2nd, but 1st, so 2nd; 2) If 1st the 2nd, but not 2nd, so not 1st; 3) Not 1st and 2nd, the 1st, so not 2nd; 4) 1st or 2nd, the 1st, so not 2nd; 5) 1st or 2nd, not 2nd, so 1st.
     From: report of Chrysippus (fragments/reports [c.240 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 07.80-81
     A reaction: [from his lost text 'Dialectics'; squashed to fit into one quote] 1) is Modus Ponens, 2) is Modus Tollens. 4) and 5) are Disjunctive Syllogisms. 3) seems a bit complex to be an indemonstrable.
Philosophy has no axioms, as it is just rational cognition of concepts [Kant]
     Full Idea: Since philosophy is merely rational cognition in accordance with concepts, no principle is to be encountered in it that deserves the name of axiom.
     From: Immanuel Kant (Critique of Pure Reason [1781], B760/A732)
     A reaction: This is an attack on traditional rationalism, which aspires to do philosophy in the style of Euclid. Kant offers, however, a very conservative view, in which all concepts are 'given'. Nowadays we want to play with new axioms, as they did in geometry.
Frege agreed with Euclid that the axioms of logic and mathematics are known through self-evidence [Frege, by Burge]
     Full Idea: Frege maintained a sophisticated version of the Euclidean position that knowledge of the axioms and theorems of logic, geometry, and arithmetic rests on the self-evidence of the axioms, definitions, and rules of inference.
     From: report of Gottlob Frege (Grundlagen der Arithmetik (Foundations) [1884]) by Tyler Burge - Frege on Apriority Intro
     A reaction: I am inclined to agree that they are indeed self-evident, but not in a purely a priori way. They are self-evident general facts about how reality is and how (it seems) that it must be. It seems to me closer to a perception than an insight.
Since every definition is an equation, one cannot define equality itself [Frege]
     Full Idea: Since every definition is an equation, one cannot define equality itself.
     From: Gottlob Frege (Review of Husserl's 'Phil of Arithmetic' [1894], p.327)
     A reaction: This seems a particularly nice instance of the general rule that 'you have to start somewhere'. It is a nice test case for the nature of meaning to ask 'what do you understand when you understand equality?', given that you can't define it.
The best known axiomatization of PL is Whitehead/Russell, with four axioms and two rules [Russell/Whitehead, by Hughes/Cresswell]
     Full Idea: The best known axiomatization of PL is Whitehead/Russell. There are four axioms: (p∨p)→p, q→(p∨q), (p→q)→(q∨p), and (q→r)→((p∨q)→(p∨r)), plus Substitution and Modus Ponens rules.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by GE Hughes/M Cresswell - An Introduction to Modal Logic Ch.1
We can eliminate 'or' from our basic theory, by paraphrasing 'p or q' as 'not(not-p and not-q)' [Quine]
     Full Idea: The construction of 'alternation' (using 'or') is useful in practice, but superfluous in theory. It can be paraphrased using only negation and conjunction. We say that 'p or q' is paraphrased as 'not(not-p and not-q)'.
     From: Willard Quine (Philosophy of Logic [1970], Ch.2)
     A reaction: Quine treats 'not' and 'and' as the axiomatic logical connectives, and builds the others from those, presumably because that is the smallest number he could get it down to. I quite like it, because it seems to mesh with basic thought procedures.
A logic with ¬ and → needs three axiom-schemas and one rule as foundation [Bostock]
     Full Idea: For ¬,→ Schemas: (A1) |-φ→(ψ→φ), (A2) |-(φ→(ψ→ξ)) → ((φ→ψ)→(φ→ξ)), (A3) |-(¬φ→¬ψ) → (ψ→φ), Rule:DET:|-φ,|-φ→ψ then |-ψ
     From: David Bostock (Intermediate Logic [1997], 5.2)
     A reaction: A1 says everything implies a truth, A2 is conditional proof, and A3 is contraposition. DET is modus ponens. This is Bostock's compact near-minimal axiom system for proposition logic. He adds two axioms and another rule for predicate logic.
Predicate logic retains the axioms of propositional logic [Devlin]
     Full Idea: Since predicate logic merely extends propositional logic, all the axioms of propositional logic are axioms of predicate logic.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 4)
     A reaction: See Idea 7798 for the axioms.
Axioms are often affirmed simply because they produce results which have been accepted [Resnik]
     Full Idea: Many axioms have been proposed, not on the grounds that they can be directly known, but rather because they produce a desired body of previously recognised results.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], One.5.1)
     A reaction: This is the perennial problem with axioms - whether we start from them, or whether we deduce them after the event. There is nothing wrong with that, just as we might infer the existence of quarks because of their results.
Axiomatization simply picks from among the true sentences a few to play a special role [Orenstein]
     Full Idea: In axiomatizing, we are merely sorting out among the truths of a science those which will play a special role, namely, serve as axioms from which we derive the others. The sentences are already true in a non-conventional or ordinary sense.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: If you were starting from scratch, as Euclidean geometers may have felt they were doing, you might want to decide which are the simplest truths. Axiomatizing an established system is a more advanced activity.
Axiom systems of logic contain axioms, inference rules, and definitions of proof and theorems [Girle]
     Full Idea: An axiom system for a logic contains three elements: a set of axioms; a set of inference rules; and definitions for proofs and theorems. There are also definitions for the derivation of conclusions from sets of premises.
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
'Natural' systems of deduction are based on normal rational practice, rather than on axioms [Baggini /Fosl]
     Full Idea: A 'natural' system of deduction does not posit any axioms, but looks instead for its formulae to the practices of ordinary rationality.
     From: J Baggini / PS Fosl (The Philosopher's Toolkit [2003], §1.09)
     A reaction: Presumably there is some middle ground, where we attempt to infer the axioms of normal practice, and then build a strict system on them. We must be allowed to criticise 'normal' rationality, I hope.
In ideal circumstances, an axiom should be such that no rational agent could possibly object to its use [Baggini /Fosl]
     Full Idea: In ideal circumstances, an axiom should be such that no rational agent could possibly object to its use.
     From: J Baggini / PS Fosl (The Philosopher's Toolkit [2003], §1.09)
     A reaction: Yes, but the trouble is that all our notions of 'rational' (giving reasons, being consistent) break down when we look at unsupported axioms. In what sense is something rational if it is self-evident?