structure for 'Theory of Logic'    |     alphabetical list of themes    |     unexpand these ideas

5. Theory of Logic / G. Quantification / 5. Second-Order Quantification

[quantifiyng over both objects, and features or sets of objects]

11 ideas
Putting a predicate letter in a quantifier is to make it the name of an entity [Quine]
     Full Idea: To put the predicate letter 'F' in a quantifier is to treat predicate positions suddenly as name positions, and hence to treat predicates as names of entities of some sort.
     From: Willard Quine (Philosophy of Logic [1970], Ch.5)
     A reaction: Quine's famous objection to second-order logic. But Quine then struggles to give an account of predicates and properties, and hence is accused by Armstrong of being an 'ostrich'. Boolos 1975 also attacks Quine here.
First-order logic concerns objects; second-order adds properties, kinds, relations and functions [Dummett]
     Full Idea: First-order logic is distinguished by generalizations (quantification) only over objects: second-order logic admits generalizations or quantification over properties or kinds of objects, and over relations between them, and functions defined over them.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 3.1)
     A reaction: Second-order logic was introduced by Frege, but is (interestingly) rejected by Quine, because of the ontological commitments involved. I remain unconvinced that quantification entails ontological commitment, so I'm happy.
Second-order quantifiers are just like plural quantifiers in ordinary language, with no extra ontology [Boolos, by Shapiro]
     Full Idea: Boolos proposes that second-order quantifiers be regarded as 'plural quantifiers' are in ordinary language, and has developed a semantics along those lines. In this way they introduce no new ontology.
     From: report of George Boolos (To be is to be the value of a variable.. [1984]) by Stewart Shapiro - Foundations without Foundationalism 7 n32
     A reaction: This presumably has to treat simple predicates and relations as simply groups of objects, rather than having platonic existence, or something.
If you ask what F the second-order quantifier quantifies over, you treat it as first-order [Fine,K]
     Full Idea: We are tempted to ask of second-order quantifiers 'what are you quantifying over?', or 'when you say "for some F" then what is the F?', but these questions already presuppose that the quantifiers are first-order.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005])
Second-order variables also range over properties, sets, relations or functions [Shapiro]
     Full Idea: Second-order variables can range over properties, sets, or relations on the items in the domain-of-discourse, or over functions from the domain itself.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
In second-order logic the higher-order variables range over all the properties of the objects [Read]
     Full Idea: The defining factor of second-order logic is that, while the domain of its individual variables may be arbitrary, the range of the first-order variables is all the properties of the objects in its domain (or, thinking extensionally, of the sets objects).
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: The key point is that the domain is 'all' of the properties. How many properties does an object have. You need to decide whether you believe in sparse or abundant properties (I vote for very sparse indeed).
Second-order logic needs second-order variables and quantification into predicate position [Melia]
     Full Idea: Permitting quantification into predicate position and adding second-order variables leads to second-order logic.
     From: Joseph Melia (Modality [2003], Ch.2)
     A reaction: Often expressed by saying that we now quantify over predicates and relations, rather than just objects. Depends on your metaphysical commitments.
Perhaps second-order quantifications cover concepts of objects, rather than plain objects [Rayo/Uzquiano]
     Full Idea: If one thought of second-order quantification as quantification over first-level Fregean concepts [note: one under which only objects fall], talk of domains might be regimented as talk of first-level concepts, which are not objects.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.2.2)
     A reaction: That is (I take it), don't quantify over objects, but quantify over concepts, but only those under which known objects fall. One might thus achieve naïve comprehension without paradoxes. Sound like fun.
Second-order variables need to range over more than collections of first-order objects [McGee]
     Full Idea: To get any advantage from moving to second-order logic, we need to assign to second-order variables a role different from merely ranging over collections made up of things the first-order variables range over.
     From: Vann McGee (Logical Consequence [2014], 7)
     A reaction: Thus it is exciting if they range over genuine properties, but not so exciting if you merely characterise those properties as sets of first-order objects. This idea leads into a discussion of plural quantification.
Basic variables in second-order logic are taken to range over subsets of the individuals [Anderson,CA]
     Full Idea: Under its now standard principal interpretation, the monadic predicate variables in second-order logic range over subsets of the domain on individuals.
     From: C. Anthony Anderson (Identity and Existence in Logic [2014], 1.5)
     A reaction: This is an interpretation in which properties are just sets of things, which is fine if you are a logician, but not if you want to talk about anything important. Still, we must play the game. Boolos introduced plural quantification at this point.