structure for 'Formal Logic'    |     alphabetical list of themes    |     unexpand these ideas

4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set

[general ways of categorising types of set]

4 ideas
In type theory, 'x ∈ y' is well defined only if x and y are of the appropriate type [Putnam]
     Full Idea: In the theory of types, 'x ∈ y' is well defined only if x and y are of the appropriate type, where individuals count as the zero type, sets of individuals as type one, sets of sets of individuals as type two.
     From: Hilary Putnam (Philosophy of Logic [1971], Ch.6)
A 'proper class' cannot be a member of anything [Bostock]
     Full Idea: A 'proper class' cannot be a member of anything, neither of a set nor of another proper class.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
A set is 'transitive' if contains every member of each of its members [Shapiro]
     Full Idea: If, for every b∈d, a∈b entails that a∈d, the d is said to be 'transitive'. In other words, d is transitive if it contains every member of each of its members.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.2)
     A reaction: The alternative would be that the members of the set are subsets, but the members of those subsets are not themselves members of the higher-level set.
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
     Full Idea: Since combinatorial collections are enumerated, some multiplicities may be too large to be gathered into combinatorial collections. But the size of a multiplicity seems quite irrelevant to whether it forms a logical connection.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)