structure for 'Mathematics'    |     alphabetical list of themes    |     unexpand these ideas

6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism

[structuralism denying real objects or real structures]

13 ideas
If mathematics is a logic of the possible, then questions of existence are not intrinsic to it [Badiou]
     Full Idea: If mathematics is a logic of the possible, then questions of existence are not intrinsic to it (as they are for the Platonist).
     From: Alain Badiou (Briefings on Existence [1998], 7)
     A reaction: See also Idea 12328. I file this to connect it with Hellman's modal (and nominalist) version of structuralism. Could it be that mathematics and modal logic are identical?
Modal structuralism says mathematics studies possible structures, which may or may not be actualised [Hellman, by Friend]
     Full Idea: The modal structuralist thinks of mathematical structures as possibilities. The application of mathematics is just the realisation that a possible structure is actualised. As structures are possibilities, realist ontological problems are avoided.
     From: report of Geoffrey Hellman (Mathematics without Numbers [1989]) by Michèle Friend - Introducing the Philosophy of Mathematics 4.3
     A reaction: Friend criticises this and rejects it, but it is appealing. Mathematics should aim to be applicable to any possible world, and not just the actual one. However, does the actual world 'actualise a mathematical structure'?
Statements of pure mathematics are elliptical for a sort of modal conditional [Hellman, by Chihara]
     Full Idea: Hellman represents statements of pure mathematics as elliptical for modal conditionals of a certain sort.
     From: report of Geoffrey Hellman (Mathematics without Numbers [1989]) by Charles Chihara - A Structural Account of Mathematics 5.3
     A reaction: It's a pity there is such difficulty in understanding conditionals (see Graham Priest on the subject). I intuit a grain of truth in this, though I take maths to reflect the structure of the actual world (with possibilities being part of that world).
Modal structuralism can only judge possibility by 'possible' models [Shapiro on Hellman]
     Full Idea: The usual way to show that a sentence is possible is to show that it has a model, but for Hellman presumably a sentence is possible if it might have a model (or if, possibly, it has a model). It is not clear what this move brings us.
     From: comment on Geoffrey Hellman (Mathematics without Numbers [1989]) by Stewart Shapiro - Philosophy of Mathematics 7.3
     A reaction: I can't assess this, but presumably the possibility of the model must be demonstrated in some way. Aren't all models merely possible, because they are based on axioms, which seem to be no more than possibilities?
Maybe mathematical objects only have structural roles, and no intrinsic nature [Hellman]
     Full Idea: There is the tantalizing possibility that perhaps mathematical objects 'have no nature' at all, beyond their 'structural role'.
     From: Geoffrey Hellman (Structuralism [2007], §1)
     A reaction: This would fit with a number being a function rather than an object. We are interested in what cars do, not the bolts that hold them together? But the ontology of mathematics is quite separate from how you do mathematics.
Is there is no more to structures than the systems that exemplify them? [Shapiro]
     Full Idea: The 'in re' view of structures is that there is no more to structures than the systems that exemplify them.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 3.3)
     A reaction: I say there is more than just the systems, because we can abstract from them to a common structure, but that doesn't commit us to the existence of such a common structure.
Number statements are generalizations about number sequences, and are bound variables [Shapiro]
     Full Idea: According to 'in re' structuralism, a statement that appears to be about numbers is a disguised generalization about all natural-number sequences; the numbers are bound variables, not singular terms.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 5.3.4)
     A reaction: Any theory of anything which comes out with the thought that 'really it is a variable, not a ...' has my immediate attention and sympathy.
Structuralism and nominalism are normally rivals, but might work together [Burgess/Rosen]
     Full Idea: Usually structuralism and nominalism are considered rivals. But structuralism can also be the first step in a strategy of nominalist reconstrual or paraphrase.
     From: JP Burgess / G Rosen (A Subject with No Object [1997], II.C.0)
     A reaction: Hellman and later Chihara seem to be the main proponents of nominalist structuralism. My sympathies lie with this strategy. Are there objects at the nodes of the structure, or is the structure itself platonic? Mill offers a route.
We can replace existence of sets with possibility of constructing token sentences [Chihara, by MacBride]
     Full Idea: Chihara's 'constructability theory' is nominalist - mathematics is reducible to a simple theory of types. Instead of talk of sets {x:x is F}, we talk of open sentences Fx defining them. Existence claims become constructability of sentence tokens.
     From: report of Charles Chihara (A Structural Account of Mathematics [2004]) by Fraser MacBride - Review of Chihara's 'Structural Acc of Maths' p.81
     A reaction: This seems to be approaching the problem in a Fregean way, by giving an account of the semantics. Chihara is trying to evade the Quinean idea that assertion is ontological commitment. But has Chihara retreated too far? How does he assert existence?
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
Structuralist says maths concerns concepts about base objects, not base objects themselves [Friend]
     Full Idea: According to the structuralist, mathematicians study the concepts (objects of study) such as variable, greater, real, add, similar, infinite set, which are one level of abstraction up from prima facie base objects such as numbers, shapes and lines.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.1)
     A reaction: This still seems to imply an ontology in which numbers, shapes and lines exist. I would have thought you could eliminate the 'base objects', and just say that the concepts are one level of abstraction up from the physical world.
Structuralism focuses on relations, predicates and functions, with objects being inessential [Friend]
     Full Idea: Structuralism says we study whole structures: objects together with their predicates, relations that bear between them, and functions that take us from one domain of objects to a range of other objects. The objects can even be eliminated.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.1)
     A reaction: The unity of object and predicate is a Quinean idea. The idea that objects are inessential is the dramatic move. To me the proposal has very strong intuitive appeal. 'Eight' is meaningless out of context. Ordinality precedes cardinality? Ideas 7524/8661.