structure for 'Formal Logic'    |     alphabetical list of themes    |     unexpand these ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V

[axiom for a vast set based on successors]

13 ideas
We have the idea of self, and an idea of that idea, and so on, so infinite ideas are available [Dedekind, by Potter]
     Full Idea: Dedekind had an interesting proof of the Axiom of Infinity. He held that I have an a priori grasp of the idea of my self, and that every idea I can form the idea of that idea. Hence there are infinitely many objects available to me a priori.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888], no. 66) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 12 'Numb'
     A reaction: Who said that Descartes' Cogito was of no use? Frege endorsed this, as long as the ideas are objective and not subjective.
Frege, unlike Russell, has infinite individuals because numbers are individuals [Frege, by Bostock]
     Full Idea: Frege was able to prove that there are infinitely many individuals by taking the numbers themselves to be individuals, but this course was not open to Russell.
     From: report of Gottlob Frege (Grundlagen der Arithmetik (Foundations) [1884]) by David Bostock - Philosophy of Mathematics 5.2
We may assume that there are infinite collections, as there is no logical reason against them [Russell]
     Full Idea: There is no logical reason against infinite collections, and we are therefore justified, in logic, in investigating the hypothesis that there are such collections.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VIII)
Infinity says 'for any inductive cardinal, there is a class having that many terms' [Russell]
     Full Idea: The Axiom of Infinity may be enunciated as 'If n be any inductive cardinal number, there is at least one class of individuals having n terms'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIII)
     A reaction: So for every possible there exists a set of terms for it. Notice that they are 'terms', not 'objects'. We must decide whether we are allowed terms which don't refer to real objects.
Infinity: there is an infinity of distinguishable individuals [Ramsey]
     Full Idea: The Axiom of Infinity means that there are an infinity of distinguishable individuals, which is an empirical proposition.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §5)
     A reaction: The Axiom sounds absurd, as a part of a logical system, but Ramsey ends up defending it. Logical tautologies, which seem to be obviously true, are rendered absurd if they don't refer to any objects, and some of them refer to infinities of objects.
The axiom of infinity is not a truth of logic, and its adoption is an abandonment of logicism [Kneale,W and M]
     Full Idea: There is something profoundly unsatisfactory about the axiom of infinity. It cannot be described as a truth of logic in any reasonable use of that phrase, and so the introduction of it as a primitive proposition amounts to the abandonment of logicism.
     From: W Kneale / M Kneale (The Development of Logic [1962], XI.2)
     A reaction: It seems that the axiom is essentially empirical, and it certainly makes an existential claim which seems to me (intuitively) to have nothing to do with logic at all.
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
     Full Idea: The (misnamed!) Axiom of Infinity expresses Cantor's fundamental assumption that the species of natural numbers is finite in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
The Axiom of Infinity states Cantor's breakthrough that launched modern mathematics [Maddy]
     Full Idea: The Axiom of Infinity is a simple statement of Cantor's great breakthrough. His bold hypothesis that a collection of elements that had lurked in the background of mathematics could be infinite launched modern mathematics.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.5)
     A reaction: It also embodies one of those many points where mathematics seems to depart from common sense - but then most subjects depart from common sense when they get more sophisticated. Look what happened to art.
Infinite sets are essential for giving an account of the real numbers [Maddy]
     Full Idea: If one is interested in analysis then infinite sets are indispensable since even the notion of a real number cannot be developed by means of finite sets alone.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.5)
     A reaction: [Maddy is citing Fraenkel, Bar-Hillel and Levy] So Cantor's great breakthrough (Idea 13021) actually follows from the earlier acceptance of the real numbers, so that's where the departure from common sense started.
Axiom of Infinity: completed infinite collections can be treated mathematically [Maddy]
     Full Idea: The axiom of infinity: that there are infinite sets is to claim that completed infinite collections can be treated mathematically. In its standard contemporary form, the axioms assert the existence of the set of all finite ordinals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
Infinity: There exists a set of the empty set and the successor of each element [Clegg]
     Full Idea: Axiom of Infinity: There exists a set containing the empty set and the successor of each of its elements.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: This is rather different from the other axioms because it contains the notion of 'successor', though that can be generated by an ordering procedure.
Infinity: There is at least one limit level [Potter]
     Full Idea: Axiom of Infinity: There is at least one limit level.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 04.9)
     A reaction: A 'limit ordinal' is one which has successors, but no predecessors. The axiom just says there is at least one infinity.