structure for 'Mathematics'    |     alphabetical list of themes    |     unexpand these ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers

[all numbers, including those inexpressible as fractions]

29 ideas
Parts of a line join at a point, so it is continuous [Aristotle]
     Full Idea: A line is a continuous quantity. For it is possible to find a common boundary at which its parts join together, a point.
     From: Aristotle (Categories [c.331 BCE], 04b33)
     A reaction: This appears to be the essential concept of a Dedekind cut. It seems to be an open question whether a cut defines a unique number, but a boundary seems to be intrinsically unique. Aristotle wins again.
Two is the least number, but there is no least magnitude, because it is always divisible [Aristotle]
     Full Idea: The least number, without qualification, is the two. …but in magnitude there is no least number, for every line always gets divided.
     From: Aristotle (Physics [c.337 BCE], 220a27)
     A reaction: Showing the geometrical approach of the Greeks to number. Two is the last number because numbers are for counting, and picking out one thing is not counting.
Descartes showed a one-one order-preserving match between points on a line and the real numbers [Descartes, by Hart,WD]
     Full Idea: Descartes founded analytic geometry on the assumption that there is a one-one order-preserving correspondence between the points on a line and the real numbers.
     From: report of René Descartes (works [1643]) by William D. Hart - The Evolution of Logic 1
We want the essence of continuity, by showing its origin in arithmetic [Dedekind]
     Full Idea: It then only remained to discover its true origin in the elements of arithmetic and thus at the same time to secure a real definition of the essence of continuity.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], Intro)
     A reaction: [He seeks the origin of the theorem that differential calculus deals with continuous magnitude, and he wants an arithmetical rather than geometrical demonstration; the result is his famous 'cut'].
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
     Full Idea: Cantor said he could show that every infinite set of points on the line could be placed into one-to-one correspondence with either the natural numbers or the real numbers - with no intermediate possibilies (the Continuum hypothesis). His proof failed.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
     Full Idea: Cantor's diagonal argument showed that all the infinite decimals between 0 and 1 cannot be written down even in a single never-ending list.
     From: report of George Cantor (works [1880]) by Stephen Read - Thinking About Logic Ch.6
Real numbers are ratios of quantities, such as lengths or masses [Frege]
     Full Idea: If 'number' is the referent of a numerical symbol, a real number is the same as a ratio of quantities. ...A length can have to another length the same ratio as a mass to another mass.
     From: Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], III.1.73), quoted by Michael Dummett - Frege philosophy of mathematics 21 'Frege's'
     A reaction: This is part of a critique of Cantor and the Cauchy series approach. Interesting that Frege, who is in the platonist camp, is keen to connect the real numbers with natural phenomena. He is always keen to keep touch with the application of mathematics.
Real numbers are ratios of quantities [Frege, by Dummett]
     Full Idea: Frege fixed on construing real numbers as ratios of quantities (in agreement with Newton).
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903]) by Michael Dummett - Frege philosophy of mathematics Ch.20
     A reaction: If 3/4 is the same real number as 6/8, which is the correct ratio? Why doesn't the square root of 9/16 also express it? Why should irrationals be so utterly different from rationals? In what sense are they both 'numbers'?
I wish to go straight from cardinals to reals (as ratios), leaving out the rationals [Frege]
     Full Idea: You need a double transition, from cardinal numbes (Anzahlen) to the rational numbers, and from the latter to the real numbers generally. I wish to go straight from the cardinal numbers to the real numbers as ratios of quantities.
     From: Gottlob Frege (Letters to Russell [1902], 1903.05.21), quoted by Michael Dummett - Frege philosophy of mathematics 21 'Frege's'
     A reaction: Note that Frege's real numbers are not quantities, but ratios of quantities. In this way the same real number can refer to lengths, masses, intensities etc.
Real numbers are a class of rational numbers (and so not really numbers at all) [Russell]
     Full Idea: Real numbers are not really numbers at all, but something quite different; ...a real number, so I shall contend, is nothing but a certain class of rational numbers. ...A segment of rationals is a real number.
     From: Bertrand Russell (The Principles of Mathematics [1903], §258)
We don't get 'nearer' to something by adding decimals to 1.1412... (root-2) [Wittgenstein]
     Full Idea: We say we get nearer to root-2 by adding further figures after the decimal point: 1.1412.... This suggests there is something we can get nearer to, but the analogy is a false one.
     From: Ludwig Wittgenstein (Lectures 1930-32 (student notes) [1931], Notes)
Could I name all of the real numbers in one fell swoop? Call them all 'Charley'? [Plantinga]
     Full Idea: Can't I name all the real numbers in the interval (0,1) at once? Couldn't I name them all 'Charley', for example?
     From: Alvin Plantinga (De Re and De Dicto [1969], p.40)
     A reaction: Plantinga is nervous about such a sweeping move, but can't think of an objection. This addresses a big problem, I think - that you are supposed to accept the real numbers when we cannot possibly name them all.
Instead of by cuts or series convergence, real numbers could be defined by axioms [Bostock]
     Full Idea: In addition to cuts, or converging series, Cantor suggests we can simply lay down a set of axioms for the real numbers, and this can be done without any explicit mention of the rational numbers [note: the axioms are those for a complete ordered field].
     From: David Bostock (Philosophy of Mathematics [2009], 4.4)
     A reaction: It is interesting when axioms are best, and when not. Set theory depends entirely on axioms. Horsten and Halbach are now exploring treating truth as axiomatic. You don't give the 'nature' of the thing - just rules for its operation.
The number of reals is the number of subsets of the natural numbers [Bostock]
     Full Idea: It is not difficult to show that the number of the real numbers is the same as the number of all the subsets of the natural numbers.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: The Continuum Hypothesis is that this is the next infinite number after the number of natural numbers. Why can't there be a number which is 'most' of the subsets of the natural numbers?
The reals contain the naturals, but the theory of reals doesn't contain the theory of naturals [Smith,P]
     Full Idea: It has been proved (by Tarski) that the real numbers R is a complete theory. But this means that while the real numbers contain the natural numbers, the pure theory of real numbers doesn't contain the theory of natural numbers.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 18.2)
Real numbers stand to measurement as natural numbers stand to counting [Kitcher]
     Full Idea: The real numbers stand to measurement as the natural numbers stand to counting.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.4)
19th century arithmetization of analysis isolated the real numbers from geometry [Hart,WD]
     Full Idea: The real numbers were not isolated from geometry until the arithmetization of analysis during the nineteenth century.
     From: William D. Hart (The Evolution of Logic [2010], 1)
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
     Full Idea: We eliminate the real numbers by giving an axiomatic definition of the species of complete ordered fields. These axioms are categorical (mutually isomorphic), and thus are mathematically indistinguishable.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: Hence my clever mathematical friend says that it is a terrible misunderstanding to think that mathematics is about numbers. Mayberry says the reals are one ordered field, but mathematics now studies all ordered fields together.
Real numbers are thought of as either Cauchy sequences or Dedekind cuts [Shapiro]
     Full Idea: Real numbers are either Cauchy sequences of rational numbers (interpreted as pairs of integers), or else real numbers can be thought of as Dedekind cuts, certain sets of rational numbers. So π is a Dedekind cut, or an equivalence class of sequences.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 2.5)
     A reaction: This question is parallel to the question of whether natural numbers are Zermelo sets or Von Neumann sets. The famous problem is that there seems no way of deciding. Hence, for Shapiro, we are looking at models, not actual objects.
Understanding the real-number structure is knowing usage of the axiomatic language of analysis [Shapiro]
     Full Idea: There is no more to understanding the real-number structure than knowing how to use the language of analysis. .. One learns the axioms of the implicit definition. ...These determine the realtionships between real numbers.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.9)
     A reaction: This, of course, is the structuralist view of such things, which isn't really interested in the intrinsic nature of anything, but only in its relations. The slogan that 'meaning is use' seems to be in the background.
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
The real numbers may be introduced by abstraction as ratios of quantities [Hale, by Hale/Wright]
     Full Idea: The real numbers may be introduced by abstraction as ratios of quantities. ..They are not defined by Dedekind cuts; rather, the cuts constitute a domain with the properties that are a necessary precondition.
     From: report of Bob Hale (Reals by Abstraction [1998]) by B Hale / C Wright - Intro to 'The Reason's Proper Study' 3.3
     A reaction: This is Hale's neo-logicist attempt to derive the real numbers from Hume's Principle.
Real numbers provide answers to square root problems [George/Velleman]
     Full Idea: One reason for introducing the real numbers is to provide answers to square root problems.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Presumably the other main reasons is to deal with problems of exact measurement. It is interesting that there seem to be two quite distinct reasons for introducing the reals. Cf. Ideas 10102 and 10106.
The rationals are everywhere - the irrationals are everywhere else [Kaplan/Kaplan]
     Full Idea: The rationals are everywhere - the irrationals are everywhere else.
     From: R Kaplan / E Kaplan (The Art of the Infinite [2003], 1 'Nameless')
     A reaction: Nice. That is, the rationals may be dense (you can always find another one in any gap), but the irrationals are continuous (no gaps).
Transcendental numbers can't be fitted to finite equations [Clegg]
     Full Idea: The 'transcendental numbers' are those irrationals that can't be fitted to a suitable finite equation, of which π is far and away the best known.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch. 6)
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
     Full Idea: The chief importance of the Continuum Hypothesis for Cantor (I believe) was that it would show that the real numbers form a set, and hence that they were encompassed by his theory.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
The 'real' numbers (rationals and irrationals combined) is the Continuum, which has no gaps [Friend]
     Full Idea: The set of 'real' numbers, which consists of the rational numbers and the irrational numbers together, represents "the continuum", since it is like a smooth line which has no gaps (unlike the rational numbers, which have the irrationals missing).
     From: Michčle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: The Continuum is the perfect abstract object, because a series of abstractions has arrived at a vast limit in its nature. It still has dizzying infinities contained within it, and at either end of the line. It makes you feel humble.
I take the real numbers to be just lengths [Hossack]
     Full Idea: I take the real numbers to be just lengths.
     From: Keith Hossack (Plurals and Complexes [2000], 9)
     A reaction: I love it. Real numbers are beginning to get on my nerves. They turn up to the party with no invitation and improperly dressed, and then refuse to give their names when challenged.
English expressions are denumerably infinite, but reals are nondenumerable, so many are unnameable [Horsten]
     Full Idea: The number of English expressions is denumerably infinite. But Cantor's theorem can be used to show that there are nondenumerably many real numbers. So not every real number has a (simple or complex name in English).
     From: Leon Horsten (The Tarskian Turn [2011], 06.3)
     A reaction: This really bothers me. Are we supposed to be committed to the existence of entities which are beyond our powers of naming? How precise must naming be? If I say 'pick a random real number', might that potentially name all of them?