structure for 'Mathematics'    |     alphabetical list of themes    |     unexpand these ideas

6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism

[general ideas concerning the structuralist approach]

34 ideas
Mathematics studies abstracted relations, commensurability and proportion [Aristotle]
     Full Idea: Mathematicians abstract perceptible features to study quantity and continuity ...and examine the mutual relations of some and the features of those relations, and commensurabilities of others, and of yet others the proportions.
     From: Aristotle (Metaphysics [c.324 BCE], 1061a32)
     A reaction: This sounds very much like the intuition of structuralism to me - that the subject is entirely about relations between things, with very little interest in the things themselves. See Aristotle on abstraction (under 'Thought').
Dedekind originated the structuralist conception of mathematics [Dedekind, by MacBride]
     Full Idea: Dedekind is the philosopher-mathematician with whom the structuralist conception originates.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888], §3 n13) by Fraser MacBride - Structuralism Reconsidered
     A reaction: Hellman says the idea grew naturally out of modern mathematics, and cites Hilbert's belief that furniture would do as mathematical objects.
Mathematicians do not study objects, but relations between objects [Poincaré]
     Full Idea: Mathematicians do not study objects, but relations between objects; it is a matter of indifference if the objects are replaced by others, provided the relations do not change. They are interested in form alone, not matter.
     From: Henri Poincaré (Science and Hypothesis [1902], p.20), quoted by E Reck / M Price - Structures and Structuralism in Phil of Maths §6
     A reaction: This connects modern structuralism with Aritotle's interest in the 'form' of things. Contrary to the views of the likes of Frege, it is hard to see that the number '7' has any properties at all, apart from its relations. A daffodil would do just as well.
What matters is the logical interrelation of mathematical terms, not their intrinsic nature [Russell]
     Full Idea: What matters in mathematics is not the intrinsic nature of our terms, but the logical nature of their interrelations.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VI)
     A reaction: If they have an instrinsic nature, that would matter far more, because that would dictate the interrelations. Structuralism seems to require that they don't actually have any intrinsic nature.
From the axiomatic point of view, mathematics is a storehouse of abstract structures [Bourbaki]
     Full Idea: From the axiomatic point of view, mathematics appears as a storehouse of abstract forms - the mathematical structures.
     From: Nicholas Bourbaki (The Architecture of Mathematics [1950], 221-32), quoted by Fraser MacBride - Review of Chihara's 'Structural Acc of Maths' p.79
     A reaction: This seems to be the culmination of the structuralist view that developed from Dedekind and Hilbert, and was further developed by philosophers in the 1990s.
I apply structuralism to concrete and abstract objects indiscriminately [Quine]
     Full Idea: My own line is a yet more sweeping structuralism (than David Lewis's account of classes), applying to concrete and abstract objects indiscriminately.
     From: Willard Quine (Structure and Nature [1992], p.6), quoted by Stewart Shapiro - Philosophy of Mathematics 4.9
     A reaction: Shapiro calls this 'breathtaking', and retreats from it, but it is something like my own view, starting from Mill's pebbles and working up.
An adequate account of a number must relate it to its series [Benacerraf]
     Full Idea: No account of an individual number is adequate unless it relates that number to the series of which it is a member.
     From: Paul Benacerraf (Logicism, Some Considerations (PhD) [1960], p.169)
     A reaction: Thus it is not totally implausible to say that 2 is several different numbers or concepts, depending on whether you see it as a natural number, an integer, a rational, or a real. This idea is the beginning of modern structuralism.
The job is done by the whole system of numbers, so numbers are not objects [Benacerraf]
     Full Idea: 'Objects' do not do the job of numbers singly; the whole system performs the job or nothing does. I therefore argue that numbers could not be objects at all.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: This thought is explored by structuralism - though it is a moot point where mere 'nodes' in a system (perhaps filled with old bits of furniture) will do the job either. No one ever explains the 'power' of numbers (felt when you do a sudoku). Causal?
If any recursive sequence will explain ordinals, then it seems to be the structure which matters [Benacerraf]
     Full Idea: If any recursive sequence whatever would do to explain ordinal numbers suggests that what is important is not the individuality of each element, but the structure which they jointly exhibit.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: This sentence launched the whole modern theory of Structuralism in mathematics. It is hard to see what properties a number-as-object could have which would entail its place in an ordinal sequence.
The number 3 defines the role of being third in a progression [Benacerraf]
     Full Idea: Any object can play the role of 3; that is, any object can be the third element in some progression. What is peculiar to 3 is that it defines that role, not by being a paradigm, but by representing the relation of any third member of a progression.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: An interesting early attempt to spell out the structuralist idea. I'm thinking that the role is spelled out by the intersection of patterns which involve threes.
Number words no more have referents than do the parts of a ruler [Benacerraf]
     Full Idea: Questions of the identification of the referents of number words should be dismissed as misguided in just the way that a question about the referents of the parts of a ruler would be seen as misguided.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: What a very nice simple point. It would be very strange to insist that every single part of the continuum of a ruler should be regarded as an 'object'.
Mathematical objects only have properties relating them to other 'elements' of the same structure [Benacerraf]
     Full Idea: Mathematical objects have no properties other than those relating them to other 'elements' of the same structure.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], p.285), quoted by Fraser MacBride - Structuralism Reconsidered §3 n13
     A reaction: Suppose we only had one number - 13 - and we all cried with joy when we recognised it in a group of objects. Would that be a number, or just a pattern, or something hovering between the two?
How can numbers be objects if order is their only property? [Benacerraf, by Putnam]
     Full Idea: Benacerraf raises the question how numbers can be 'objects' if they have no properties except order in a particular ω-sequence.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965], p.301) by Hilary Putnam - Mathematics without Foundations
     A reaction: Frege certainly didn't think that order was their only property (see his 'borehole' metaphor in Grundlagen). It might be better to say that they are objects which only have relational properties.
To be a structuralist, you quantify over relations [Lewis]
     Full Idea: To be a structuralist, you quantify over relations.
     From: David Lewis (Parts of Classes [1991], 2.6)
Structuralism is now common, studying relations, with no regard for what the objects might be [Hellman]
     Full Idea: With developments in modern mathematics, structuralist ideas have become commonplace. We study 'abstract structures', having relations without regard to the objects. As Hilbert famously said, items of furniture would do.
     From: Geoffrey Hellman (Structuralism [2007], §1)
     A reaction: Hilbert is known as a Formalist, which suggests that modern Structuralism is a refined and more naturalist version of the rather austere formalist view. Presumably the sofa can't stand for six, so a structural definition of numbers is needed.
The subject-matter of (pure) mathematics is abstract structure [Jubien]
     Full Idea: The subject-matter of (pure) mathematics is abstract structure per se.
     From: Michael Jubien (Ontology and Mathematical Truth [1977], p.115)
     A reaction: This is the Structuralist idea beginning to take shape after Benacerraf's launching of it. Note that Jubien gets there by his rejection of platonism, whereas some structuralist have given a platonist interpretation of structure.
Mathematical constants and quantifiers only exist as locations within structures or patterns [Resnik]
     Full Idea: In maths the primary subject-matter is not mathematical objects but structures in which they are arranged; our constants and quantifiers denote atoms, structureless points, or positions in structures; they have no identity outside a structure or pattern.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.1)
     A reaction: This seems to me a very promising idea for the understanding of mathematics. All mathematicians acknowledge that the recognition of patterns is basic to the subject. Even animals recognise patterns. It is natural to invent a language of patterns.
Sets are positions in patterns [Resnik]
     Full Idea: On my view, sets are positions in certain patterns.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.5)
     A reaction: I have always found the ontology of a 'set' puzzling, because they seem to depend on prior reasons why something is a member of a given set, which cannot always be random. It is hard to explain sets without mentioning properties.
Baseball positions and chess pieces depend entirely on context [Shapiro]
     Full Idea: We cannot imagine a shortstop independent of a baseball infield, or a piece that plays the role of black's queen bishop independent of a chess game.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 3.1)
     A reaction: This is the basic thought that leads to the structuralist view of things. I must be careful because I like structuralism, but I have attacked the functionalist view in many areas, because it neglects the essences of the functioning entities.
The even numbers have the natural-number structure, with 6 playing the role of 3 [Shapiro]
     Full Idea: The even numbers and the natural numbers greater than 4 both exemplify the natural-number structure. In the former, 6 plays the 3 role, and in the latter 8 plays the 3 role.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 3.5)
     A reaction: This begins to sound a bit odd. If you count the even numbers, 6 is the third one. I could count pebbles using only evens, but then presumably '6' would just mean '3'; it wouldn't be the actual number 6 acting in a different role, like Laurence Olivier.
Could infinite structures be apprehended by pattern recognition? [Shapiro]
     Full Idea: It is contentious, to say the least, to claim that infinite structures are apprehended by pattern recognition.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.1)
     A reaction: It only seems contentious for completed infinities. The idea that the pattern continues in same way seems (pace Wittgenstein) fairly self-evident, just like an arithmetical series.
The 4-pattern is the structure common to all collections of four objects [Shapiro]
     Full Idea: The 4-pattern is the structure common to all collections of four objects.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.2)
     A reaction: This seems open to Frege's objection, that you can have four disparate abstract concepts, or four spatially scattered items of unknown pattern. It certainly isn't a visual pattern, but then if the only detectable pattern is the fourness, it is circular.
The main mathematical structures are algebraic, ordered, and topological [Shapiro]
     Full Idea: According to Bourbaki, there are three main types of structure: algebraic structures, such as group, ring, field; order structures, such as partial order, linear order, well-order; topological structures, involving limit, neighbour, continuity, and space.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 5.5)
     A reaction: Bourbaki is mentioned as the main champion of structuralism within mathematics.
Some structures are exemplified by both abstract and concrete [Shapiro]
     Full Idea: Some structures are exemplified by both systems of abstracta and systems of concreta.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 8.2)
     A reaction: It at least seems plausible that one might try to build a physical structure that modelled arithmetic (an abacus might be an instance), so the parallel is feasible. Then to say that the abstract arose from modelling the physical seems equally plausible.
Mathematical structures are defined by axioms, or in set theory [Shapiro]
     Full Idea: Mathematical structures are characterised axiomatically (as implicit definitions), or they are defined in set theory.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 8.3)
     A reaction: Presumably earlier mathematicians had neither axiomatised their theories, nor expressed them in set theory, but they still had a good working knowledge of the relationships.
Structuralists take the name 'R' of the reals to be a variable ranging over structures, not a structure [Burgess]
     Full Idea: On the structuralist interpretation, theorems of analysis concerning the real numbers R are about all complete ordered fields. So R, which appears to be the name of a specific structure, is taken to be a variable ranging over structures.
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §1)
     A reaction: Since I am beginning to think that nearly all linguistic expressions should be understood as variables, I find this very appealing, even if Burgess hates it. Terms slide and drift, and are vague, between variable and determinate reference.
There is no one relation for the real number 2, as relations differ in different models [Burgess]
     Full Idea: One might meet the 'Van Inwagen Problem' by saying that the intrinsic properties of the object playing the role of 2 will differ from one model to another, so that no statement about the intrinsic properties of 'the' real numbers will make sense.
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §5)
     A reaction: There seems to be a potential confusion among opponents of structuralism between relations at the level of actual mathematical operations, and generalisations about relations, which are captured in the word 'patterns'. Call them 'meta-relations'?
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
Mathematics is the study of all possible patterns, and is thus bound to describe the world [Linnebo]
     Full Idea: Philosophical structuralism holds that mathematics is the study of abstract structures, or 'patterns'. If mathematics is the study of all possible patterns, then it is inevitable that the world is described by mathematics.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 11.1)
     A reaction: [He cites the physicist John Barrow (2010) for this] For me this is a major idea, because the concept of a pattern gives a link between the natural physical world and the abstract world of mathematics. No platonism is needed.
The number 8 in isolation from the other numbers is of no interest [Friend]
     Full Idea: There is no interest for the mathematician in studying the number 8 in isolation from the other numbers.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: This is a crucial and simple point (arising during a discussion of Shapiro's structuralism). Most things are interesting in themselves, as well as for their relationships, but mathematical 'objects' just are relationships.
In structuralism the number 8 is not quite the same in different structures, only equivalent [Friend]
     Full Idea: Structuralists give a historical account of why the 'same' number occupies different structures. Numbers are equivalent rather than identical. 8 is the immediate predecessor of 9 in the whole numbers, but in the rationals 9 has no predecessor.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: I don't become a different person if I move from a detached house to a terraced house. This suggests that 8 can't be entirely defined by its relations, and yet it is hard to see what its intrinsic nature could be, apart from the units which compose it.
Structuralism say only 'up to isomorphism' matters because that is all there is to it [Colyvan]
     Full Idea: Structuralism is able to explain why mathematicians are typically only interested in describing the objects they study up to isomorphism - for that is all there is to describe.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)