Combining Texts

All the ideas for 'fragments/reports', 'Sameness and Substance Renewed' and 'Philosophies of Mathematics'

expand these ideas     |    start again     |     specify just one area for these texts


84 ideas

1. Philosophy / F. Analytic Philosophy / 4. Conceptual Analysis
We learn a concept's relations by using it, without reducing it to anything [Wiggins]
2. Reason / D. Definition / 7. Contextual Definition
Contextual definitions replace a complete sentence containing the expression [George/Velleman]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions quantify over the thing being defined [George/Velleman]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'power set' of A is all the subsets of A [George/Velleman]
The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}} [George/Velleman]
Cartesian Product A x B: the set of all ordered pairs in which a∈A and b∈B [George/Velleman]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
Grouping by property is common in mathematics, usually using equivalence [George/Velleman]
'Equivalence' is a reflexive, symmetric and transitive relation; 'same first letter' partitions English words [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Even the elements of sets in ZFC are sets, resting on the pure empty set [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Axiom of Extensionality: for all sets x and y, if x and y have the same elements then x = y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Axiom of Pairing: for all sets x and y, there is a set z containing just x and y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
The Axiom of Reducibility made impredicative definitions possible [George/Velleman]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
ZFC can prove that there is no set corresponding to the concept 'set' [George/Velleman]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
As a reduction of arithmetic, set theory is not fully general, and so not logical [George/Velleman]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Asserting Excluded Middle is a hallmark of realism about the natural world [George/Velleman]
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
(λx)[Man x] means 'the property x has iff x is a man'. [Wiggins]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' is a meaning-assignment which makes all the axioms true [George/Velleman]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Differences between isomorphic structures seem unimportant [George/Velleman]
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is a purely syntactic property, unlike the semantic property of soundness [George/Velleman]
A 'consistent' theory cannot contain both a sentence and its negation [George/Velleman]
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness is a semantic property, unlike the purely syntactic property of consistency [George/Velleman]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A 'complete' theory contains either any sentence or its negation [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Rational numbers give answers to division problems with integers [George/Velleman]
The integers are answers to subtraction problems involving natural numbers [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers provide answers to square root problems [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Logicists say mathematics is applicable because it is totally general [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The classical mathematician believes the real numbers form an actual set [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order induction is stronger as it covers all concepts, not just first-order definable ones [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The Incompleteness proofs use arithmetic to talk about formal arithmetic [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A successor is the union of a set with its singleton [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Frege's Theorem shows the Peano Postulates can be derived from Hume's Principle [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory can prove the Peano Postulates [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Talk of 'abstract entities' is more a label for the problem than a solution to it [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
If mathematics is not about particulars, observing particulars must be irrelevant [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
In the unramified theory of types, the types are objects, then sets of objects, sets of sets etc. [George/Velleman]
The theory of types seems to rule out harmless sets as well as paradoxical ones. [George/Velleman]
Type theory has only finitely many items at each level, which is a problem for mathematics [George/Velleman]
Type theory prohibits (oddly) a set containing an individual and a set of individuals [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Bounded quantification is originally finitary, as conjunctions and disjunctions [George/Velleman]
Much infinite mathematics can still be justified finitely [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
The intuitionists are the idealists of mathematics [George/Velleman]
Gödel's First Theorem suggests there are truths which are independent of proof [George/Velleman]
7. Existence / A. Nature of Existence / 6. Criterion for Existence
What exists can't depend on our conceptual scheme, and using all conceptual schemes is too liberal [Sider on Wiggins]
9. Objects / A. Existence of Objects / 5. Individuation / a. Individuation
We can accept criteria of distinctness and persistence, without making the counterfactual claims [Mackie,P on Wiggins]
Activity individuates natural things, functions do artefacts, and intentions do artworks [Wiggins]
9. Objects / A. Existence of Objects / 5. Individuation / d. Individuation by haecceity
The idea of 'thisness' is better expressed with designation/predication and particular/universal [Wiggins]
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
A sortal essence is a thing's principle of individuation [Wiggins, by Mackie,P]
Wiggins's sortal essentialism rests on a thing's principle of individuation [Wiggins, by Mackie,P]
The evening star is the same planet but not the same star as the morning star, since it is not a star [Wiggins]
'Sortalism' says parts only compose a whole if it falls under a sort or kind [Wiggins, by Hossack]
Identity a=b is only possible with some concept to give persistence and existence conditions [Wiggins, by Strawson,P]
A thing is necessarily its highest sortal kind, which entails an essential constitution [Wiggins, by Strawson,P]
Many predicates are purely generic, or pure determiners, rather than sortals [Wiggins]
The possibility of a property needs an essential sortal concept to conceive it [Wiggins]
9. Objects / B. Unity of Objects / 3. Unity Problems / d. Coincident objects
Objects can only coincide if they are of different kinds; trees can't coincide with other trees [Wiggins, by Sider]
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Is the Pope's crown one crown, if it is made of many crowns? [Wiggins]
Boundaries are not crucial to mountains, so they are determinate without a determinate extent [Wiggins]
9. Objects / C. Structure of Objects / 5. Composition of an Object
Identity is an atemporal relation, but composition is relative to times [Wiggins, by Sider]
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
If I destroy an item, I do not destroy each part of it [Wiggins]
9. Objects / D. Essence of Objects / 3. Individual Essences
We can forget about individual or particularized essences [Wiggins]
9. Objects / D. Essence of Objects / 8. Essence as Explanatory
Essences are not explanations, but individuations [Wiggins]
9. Objects / D. Essence of Objects / 9. Essence and Properties
Essentialism is best represented as a predicate-modifier: □(a exists → a is F) [Wiggins, by Mackie,P]
9. Objects / D. Essence of Objects / 13. Nominal Essence
The nominal essence is the idea behind a name used for sorting [Wiggins]
9. Objects / E. Objects over Time / 4. Four-Dimensionalism
It is easier to go from horses to horse-stages than from horse-stages to horses [Wiggins]
9. Objects / E. Objects over Time / 9. Ship of Theseus
The question is not what gets the title 'Theseus' Ship', but what is identical with the original [Wiggins]
9. Objects / F. Identity among Objects / 1. Concept of Identity
Identity over a time and at a time aren't different concepts [Wiggins]
Hesperus=Hesperus, and Phosphorus=Hesperus, so necessarily Phosphorus=Hesperus [Wiggins]
9. Objects / F. Identity among Objects / 2. Defining Identity
The formal properties of identity are reflexivity and Leibniz's Law [Wiggins]
9. Objects / F. Identity among Objects / 3. Relative Identity
Relative Identity is incompatible with the Indiscernibility of Identicals [Wiggins, by Strawson,P]
Relativity of Identity makes identity entirely depend on a category [Wiggins]
To identify two items, we must have a common sort for them [Wiggins]
9. Objects / F. Identity among Objects / 8. Leibniz's Law
Do both 'same f as' and '=' support Leibniz's Law? [Wiggins]
Substitutivity, and hence most reasoning, needs Leibniz's Law [Wiggins]
10. Modality / E. Possible worlds / 1. Possible Worlds / d. Possible worlds actualism
Possible worlds rest on the objects about which we have suppositions [Wiggins]
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / b. Worlds as fictions
Not every story corresponds to a possible world [Wiggins]
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
Asking 'what is it?' nicely points us to the persistence of a continuing entity [Wiggins]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Corresponding to every concept there is a class (some of them sets) [George/Velleman]
18. Thought / D. Concepts / 2. Origin of Concepts / a. Origin of concepts
The mind conceptualizes objects; yet objects impinge upon the mind [Wiggins]
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
We can use 'concept' for the reference, and 'conception' for sense [Wiggins]
19. Language / F. Communication / 3. Denial
Contradiction is impossible, since only one side of the argument refers to the true facts [Prodicus, by Didymus the Blind]
26. Natural Theory / B. Natural Kinds / 3. Knowing Kinds
Lawlike propensities are enough to individuate natural kinds [Wiggins]
28. God / B. Proving God / 3. Proofs of Evidence / c. Teleological Proof critique
People used to think anything helpful to life was a god, as the Egyptians think the Nile a god [Prodicus]
28. God / C. Attitudes to God / 5. Atheism
The gods are just personified human benefits [Prodicus]
He denied the existence of the gods, saying they are just exaltations of things useful for life [Prodicus]