Combining Texts

All the ideas for 'fragments/reports', 'Philosophy of Mathematics' and 'Infinity: Quest to Think the Unthinkable'

expand these ideas     |    start again     |     specify just one area for these texts


30 ideas

4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A set is 'well-ordered' if every subset has a first element [Clegg]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory made a closer study of infinity possible [Clegg]
Any set can always generate a larger set - its powerset, of subsets [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: Two sets are equal if and only if they have the same elements [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: For any two sets there exists a set to which they both belong [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Unions: There is a set of all the elements which belong to at least one set in a collection [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There exists a set of the empty set and the successor of each element [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Powers: All the subsets of a given set form their own new powerset [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: For every set a mechanism will choose one member of any non-empty subset [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Axiom of Existence: there exists at least one set [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: a condition applied to a set will always produce a new set [Clegg]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory says any formula defines a set, and coextensive sets are identical [Linnebo]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
In classical semantics singular terms refer, and quantifiers range over domains [Linnebo]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The axioms of group theory are not assertions, but a definition of a structure [Linnebo]
To investigate axiomatic theories, mathematics needs its own foundational axioms [Linnebo]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics can be 'pure' (unapplied), 'real' (physically grounded); or 'applied' (just applicable) [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
An ordinal number is defined by the set that comes before it [Clegg]
Beyond infinity cardinals and ordinals can come apart [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Transcendental numbers can't be fitted to finite equations [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / k. Imaginary numbers
By adding an axis of imaginary numbers, we get the useful 'number plane' instead of number line [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Either lack of zero made early mathematics geometrical, or the geometrical approach made zero meaningless [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's account of infinities has the shaky foundation of irrational numbers [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis is independent of the axioms of set theory [Clegg]
The 'continuum hypothesis' says aleph-one is the cardinality of the reals [Clegg]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
You can't prove consistency using a weaker theory, but you can use a consistent theory [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematics is the study of all possible patterns, and is thus bound to describe the world [Linnebo]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logical truth is true in all models, so mathematical objects can't be purely logical [Linnebo]
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Game Formalism has no semantics, and Term Formalism reduces the semantics [Linnebo]
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]