Combining Texts

All the ideas for 'fragments/reports', 'What Numbers Could Not Be' and 'What Required for Foundation for Maths?'

expand these ideas     |    start again     |     specify just one area for these texts


57 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
There is a semi-categorical axiomatisation of set-theory [Mayberry]
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
There are no such things as numbers [Benacerraf]
Numbers can't be sets if there is no agreement on which sets they are [Benacerraf]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Benacerraf says numbers are defined by their natural ordering [Benacerraf, by Fine,K]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
To understand finite cardinals, it is necessary and sufficient to understand progressions [Benacerraf, by Wright,C]
A set has k members if it one-one corresponds with the numbers less than or equal to k [Benacerraf]
To explain numbers you must also explain cardinality, the counting of things [Benacerraf]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
We can count intransitively (reciting numbers) without understanding transitive counting of items [Benacerraf]
Someone can recite numbers but not know how to count things; but not vice versa [Benacerraf]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
The application of a system of numbers is counting and measurement [Benacerraf]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The successor of x is either x and all its members, or just the unit set of x [Benacerraf]
For Zermelo 3 belongs to 17, but for Von Neumann it does not [Benacerraf]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
Set theory is not just another axiomatised part of mathematics [Mayberry]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Disputes about mathematical objects seem irrelevant, and mathematicians cannot resolve them [Benacerraf, by Friend]
No particular pair of sets can tell us what 'two' is, just by one-to-one correlation [Benacerraf, by Lowe]
If ordinal numbers are 'reducible to' some set-theory, then which is which? [Benacerraf]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
The job is done by the whole system of numbers, so numbers are not objects [Benacerraf]
If any recursive sequence will explain ordinals, then it seems to be the structure which matters [Benacerraf]
The number 3 defines the role of being third in a progression [Benacerraf]
Number words no more have referents than do the parts of a ruler [Benacerraf]
Mathematical objects only have properties relating them to other 'elements' of the same structure [Benacerraf]
How can numbers be objects if order is their only property? [Benacerraf, by Putnam]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Number-as-objects works wholesale, but fails utterly object by object [Benacerraf]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are not predicates, as they function very differently from adjectives [Benacerraf]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
The set-theory paradoxes mean that 17 can't be the class of all classes with 17 members [Benacerraf]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
9. Objects / F. Identity among Objects / 6. Identity between Objects
Identity statements make sense only if there are possible individuating conditions [Benacerraf]
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]