Combining Texts

All the ideas for 'Meno', 'What Numbers Could Not Be' and 'Roman Law'

expand these ideas     |    start again     |     specify just one area for these texts


37 ideas

1. Philosophy / A. Wisdom / 1. Nature of Wisdom
Spiritual qualities only become advantageous with the growth of wisdom [Plato]
5. Theory of Logic / L. Paradox / 2. Aporiai
How can you seek knowledge of something if you don't know it? [Plato]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
There are no such things as numbers [Benacerraf]
Numbers can't be sets if there is no agreement on which sets they are [Benacerraf]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Benacerraf says numbers are defined by their natural ordering [Benacerraf, by Fine,K]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
To understand finite cardinals, it is necessary and sufficient to understand progressions [Benacerraf, by Wright,C]
A set has k members if it one-one corresponds with the numbers less than or equal to k [Benacerraf]
To explain numbers you must also explain cardinality, the counting of things [Benacerraf]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
We can count intransitively (reciting numbers) without understanding transitive counting of items [Benacerraf]
Someone can recite numbers but not know how to count things; but not vice versa [Benacerraf]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
The application of a system of numbers is counting and measurement [Benacerraf]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
For Zermelo 3 belongs to 17, but for Von Neumann it does not [Benacerraf]
The successor of x is either x and all its members, or just the unit set of x [Benacerraf]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Disputes about mathematical objects seem irrelevant, and mathematicians cannot resolve them [Benacerraf, by Friend]
No particular pair of sets can tell us what 'two' is, just by one-to-one correlation [Benacerraf, by Lowe]
If ordinal numbers are 'reducible to' some set-theory, then which is which? [Benacerraf]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
If any recursive sequence will explain ordinals, then it seems to be the structure which matters [Benacerraf]
The job is done by the whole system of numbers, so numbers are not objects [Benacerraf]
The number 3 defines the role of being third in a progression [Benacerraf]
Number words no more have referents than do the parts of a ruler [Benacerraf]
Mathematical objects only have properties relating them to other 'elements' of the same structure [Benacerraf]
How can numbers be objects if order is their only property? [Benacerraf, by Putnam]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Number-as-objects works wholesale, but fails utterly object by object [Benacerraf]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are not predicates, as they function very differently from adjectives [Benacerraf]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
The set-theory paradoxes mean that 17 can't be the class of all classes with 17 members [Benacerraf]
9. Objects / F. Identity among Objects / 6. Identity between Objects
Identity statements make sense only if there are possible individuating conditions [Benacerraf]
11. Knowledge Aims / A. Knowledge / 3. Value of Knowledge
True opinions only become really valuable when they are tied down by reasons [Plato]
12. Knowledge Sources / A. A Priori Knowledge / 3. Innate Knowledge / b. Recollection doctrine
Seeking and learning are just recollection [Plato]
The slave boy learns geometry from questioning, not teaching, so it is recollection [Plato]
13. Knowledge Criteria / A. Justification Problems / 1. Justification / b. Need for justification
As a guide to action, true opinion is as good as knowledge [Plato]
13. Knowledge Criteria / D. Scepticism / 6. Scepticism Critique
You don't need to learn what you know, and how do you seek for what you don't know? [Plato]
23. Ethics / C. Virtue Theory / 2. Elements of Virtue Theory / d. Teaching virtue
It seems that virtue is neither natural nor taught, but is a divine gift [Plato]
Is virtue taught, or achieved by practice, or a natural aptitude, or what? [Plato]
If virtue is a type of knowledge then it ought to be taught [Plato]
23. Ethics / C. Virtue Theory / 2. Elements of Virtue Theory / j. Unity of virtue
Even if virtues are many and various, they must have something in common to make them virtues [Plato]
How can you know part of virtue without knowing the whole? [Plato]
25. Social Practice / D. Justice / 3. Punishment / a. Right to punish
No crime and no punishment without a law [Roman law]