Combining Texts

All the ideas for 'fragments/reports', 'Introduction to Mathematical Philosophy' and 'Understanding the Infinite'

expand these ideas     |    start again     |     specify just one area for these texts


88 ideas

1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
'Socrates is human' expresses predication, and 'Socrates is a man' expresses identity [Russell]
2. Reason / D. Definition / 3. Types of Definition
A definition by 'extension' enumerates items, and one by 'intension' gives a defining property [Russell]
2. Reason / F. Fallacies / 8. Category Mistake / a. Category mistakes
The sentence 'procrastination drinks quadruplicity' is meaningless, rather than false [Russell, by Orenstein]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
An argument 'satisfies' a function φx if φa is true [Russell]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
The Darapti syllogism is fallacious: All M is S, all M is P, so some S is P' - but if there is no M? [Russell]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
We can enumerate finite classes, but an intensional definition is needed for infinite classes [Russell]
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Members define a unique class, whereas defining characteristics are numerous [Russell]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
We may assume that there are infinite collections, as there is no logical reason against them [Russell]
Infinity says 'for any inductive cardinal, there is a class having that many terms' [Russell]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The British parliament has one representative selected from each constituency [Russell]
Choice shows that if any two cardinals are not equal, one must be the greater [Russell]
Choice is equivalent to the proposition that every class is well-ordered [Russell]
We can pick all the right or left boots, but socks need Choice to insure the representative class [Russell]
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Reducibility: a family of functions is equivalent to a single type of function [Russell]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
Propositions about classes can be reduced to propositions about their defining functions [Russell]
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Russell's proposal was that only meaningful predicates have sets as their extensions [Russell, by Orenstein]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Classes are logical fictions, and are not part of the ultimate furniture of the world [Russell]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
All the propositions of logic are completely general [Russell]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
In modern times, logic has become mathematical, and mathematics has become logical [Russell]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Logic can be known a priori, without study of the actual world [Russell]
Logic is concerned with the real world just as truly as zoology [Russell]
Logic can only assert hypothetical existence [Russell]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
5. Theory of Logic / F. Referring in Logic / 1. Naming / b. Names as descriptive
Russell admitted that even names could also be used as descriptions [Russell, by Bach]
Asking 'Did Homer exist?' is employing an abbreviated description [Russell]
Names are really descriptions, except for a few words like 'this' and 'that' [Russell]
5. Theory of Logic / F. Referring in Logic / 1. Naming / f. Names eliminated
The only genuine proper names are 'this' and 'that' [Russell]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / a. Descriptions
'I met a unicorn' is meaningful, and so is 'unicorn', but 'a unicorn' is not [Russell]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 2. Geometry
If straight lines were like ratios they might intersect at a 'gap', and have no point in common [Russell]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
New numbers solve problems: negatives for subtraction, fractions for division, complex for equations [Russell]
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Could a number just be something which occurs in a progression? [Russell, by Hart,WD]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A series can be 'Cut' in two, where the lower class has no maximum, the upper no minimum [Russell]
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / j. Complex numbers
A complex number is simply an ordered couple of real numbers [Russell]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
Discovering that 1 is a number was difficult [Russell]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Numbers are needed for counting, so they need a meaning, and not just formal properties [Russell]
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
The formal laws of arithmetic are the Commutative, the Associative and the Distributive [Russell]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Infinity and continuity used to be philosophy, but are now mathematics [Russell]
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The definition of order needs a transitive relation, to leap over infinite intermediate terms [Russell]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Any founded, non-repeating series all reachable in steps will satisfy Peano's axioms [Russell]
'0', 'number' and 'successor' cannot be defined by Peano's axioms [Russell]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
A number is something which characterises collections of the same size [Russell]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
What matters is the logical interrelation of mathematical terms, not their intrinsic nature [Russell]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Maybe numbers are adjectives, since 'ten men' grammatically resembles 'white men' [Russell]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
For Russell, numbers are sets of equivalent sets [Russell, by Benacerraf]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / e. Psychologism
There is always something psychological about inference [Russell]
7. Existence / A. Nature of Existence / 1. Nature of Existence
Existence can only be asserted of something described, not of something named [Russell]
7. Existence / D. Theories of Reality / 7. Fictionalism
Classes are logical fictions, made from defining characteristics [Russell]
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
If a relation is symmetrical and transitive, it has to be reflexive [Russell]
'Asymmetry' is incompatible with its converse; a is husband of b, so b can't be husband of a [Russell]
9. Objects / D. Essence of Objects / 3. Individual Essences
The essence of individuality is beyond description, and hence irrelevant to science [Russell]
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
Inferring q from p only needs p to be true, and 'not-p or q' to be true [Russell]
All forms of implication are expressible as truth-functions [Russell]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
If something is true in all possible worlds then it is logically necessary [Russell]
14. Science / B. Scientific Theories / 1. Scientific Theory
Mathematically expressed propositions are true of the world, but how to interpret them? [Russell]
19. Language / D. Propositions / 1. Propositions
Propositions are mainly verbal expressions of true or false, and perhaps also symbolic thoughts [Russell]
21. Aesthetics / C. Artistic Issues / 7. Art and Morality
Musical performance can reveal a range of virtues [Damon of Ath.]