Combining Texts

All the ideas for 'fragments/reports', 'Philosophies of Mathematics' and 'Necessity, Essence and Individuation'

expand these ideas     |    start again     |     specify just one area for these texts


64 ideas

1. Philosophy / E. Nature of Metaphysics / 6. Metaphysics as Conceptual
Metaphysics is clarifying how we speak and think (and possibly improving it) [Sidelle]
2. Reason / D. Definition / 7. Contextual Definition
Contextual definitions replace a complete sentence containing the expression [George/Velleman]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions quantify over the thing being defined [George/Velleman]
2. Reason / E. Argument / 7. Thought Experiments
We seem to base necessities on thought experiments and imagination [Sidelle]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'power set' of A is all the subsets of A [George/Velleman]
Cartesian Product A x B: the set of all ordered pairs in which a∈A and b∈B [George/Velleman]
The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}} [George/Velleman]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
Grouping by property is common in mathematics, usually using equivalence [George/Velleman]
'Equivalence' is a reflexive, symmetric and transitive relation; 'same first letter' partitions English words [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Even the elements of sets in ZFC are sets, resting on the pure empty set [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Axiom of Extensionality: for all sets x and y, if x and y have the same elements then x = y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Axiom of Pairing: for all sets x and y, there is a set z containing just x and y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
The Axiom of Reducibility made impredicative definitions possible [George/Velleman]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
ZFC can prove that there is no set corresponding to the concept 'set' [George/Velleman]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
As a reduction of arithmetic, set theory is not fully general, and so not logical [George/Velleman]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Asserting Excluded Middle is a hallmark of realism about the natural world [George/Velleman]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' is a meaning-assignment which makes all the axioms true [George/Velleman]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Differences between isomorphic structures seem unimportant [George/Velleman]
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is a purely syntactic property, unlike the semantic property of soundness [George/Velleman]
A 'consistent' theory cannot contain both a sentence and its negation [George/Velleman]
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness is a semantic property, unlike the purely syntactic property of consistency [George/Velleman]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A 'complete' theory contains either any sentence or its negation [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Rational numbers give answers to division problems with integers [George/Velleman]
The integers are answers to subtraction problems involving natural numbers [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers provide answers to square root problems [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Logicists say mathematics is applicable because it is totally general [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The classical mathematician believes the real numbers form an actual set [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order induction is stronger as it covers all concepts, not just first-order definable ones [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The Incompleteness proofs use arithmetic to talk about formal arithmetic [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A successor is the union of a set with its singleton [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Frege's Theorem shows the Peano Postulates can be derived from Hume's Principle [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory can prove the Peano Postulates [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Talk of 'abstract entities' is more a label for the problem than a solution to it [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
If mathematics is not about particulars, observing particulars must be irrelevant [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
In the unramified theory of types, the types are objects, then sets of objects, sets of sets etc. [George/Velleman]
The theory of types seems to rule out harmless sets as well as paradoxical ones. [George/Velleman]
Type theory has only finitely many items at each level, which is a problem for mathematics [George/Velleman]
Type theory prohibits (oddly) a set containing an individual and a set of individuals [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Bounded quantification is originally finitary, as conjunctions and disjunctions [George/Velleman]
Much infinite mathematics can still be justified finitely [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
The intuitionists are the idealists of mathematics [George/Velleman]
Gödel's First Theorem suggests there are truths which are independent of proof [George/Velleman]
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / d. Dispositions as occurrent
There doesn't seem to be anything in the actual world that can determine modal facts [Sidelle]
9. Objects / D. Essence of Objects / 2. Types of Essence
Causal reference presupposes essentialism if it refers to modally extended entities [Sidelle]
9. Objects / D. Essence of Objects / 7. Essence and Necessity / c. Essentials are necessary
Clearly, essential predications express necessary properties [Sidelle]
9. Objects / D. Essence of Objects / 8. Essence as Explanatory
Being a deepest explanatory feature is an actual, not a modal property [Sidelle]
9. Objects / D. Essence of Objects / 15. Against Essentialism
That the essence of water is its microstructure is a convention, not a discovery [Sidelle]
9. Objects / F. Identity among Objects / 3. Relative Identity
We aren't clear about 'same stuff as this', so a principle of individuation is needed to identify it [Sidelle]
10. Modality / A. Necessity / 4. De re / De dicto modality
Evaluation of de dicto modalities does not depend on the identity of its objects [Sidelle]
10. Modality / C. Sources of Modality / 3. Necessity by Convention
Necessary a posteriori is conventional for necessity and nonmodal for a posteriority [Sidelle, by Sider]
To know empirical necessities, we need empirical facts, plus conventions about which are necessary [Sidelle]
10. Modality / D. Knowledge of Modality / 3. A Posteriori Necessary
The necessary a posteriori is statements either of identity or of essence [Sidelle]
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / a. Conceivable as possible
Empiricism explores necessities and concept-limits by imagining negations of truths [Sidelle]
Contradictoriness limits what is possible and what is imaginable [Sidelle]
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
The individuals and kinds involved in modality are also a matter of convention [Sidelle]
10. Modality / E. Possible worlds / 3. Transworld Objects / b. Rigid designation
A thing doesn't need transworld identity prior to rigid reference - that could be a convention of the reference [Sidelle]
'Dthat' operates to make a singular term into a rigid term [Sidelle]
12. Knowledge Sources / A. A Priori Knowledge / 8. A Priori as Analytic
A priori knowledge is entirely of analytic truths [Sidelle]
18. Thought / C. Content / 5. Twin Earth
That water is essentially H2O in some way concerns how we use 'water' [Sidelle]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Corresponding to every concept there is a class (some of them sets) [George/Velleman]
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
Causal reference seems to get directly at the object, thus leaving its nature open [Sidelle]
19. Language / B. Reference / 5. Speaker's Reference
Because some entities overlap, reference must have analytic individuation principles [Sidelle]
21. Aesthetics / C. Artistic Issues / 7. Art and Morality
Musical performance can reveal a range of virtues [Damon of Ath.]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / e. Anti scientific essentialism
Can anything in science reveal the necessity of what it discovers? [Sidelle]