Combining Texts

All the ideas for 'fragments/reports', 'Introducing the Philosophy of Mathematics' and 'Introduction to Mathematical Philosophy'

expand these ideas     |    start again     |     specify just one area for these texts


97 ideas

1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
'Socrates is human' expresses predication, and 'Socrates is a man' expresses identity [Russell]
2. Reason / D. Definition / 3. Types of Definition
A definition by 'extension' enumerates items, and one by 'intension' gives a defining property [Russell]
2. Reason / D. Definition / 8. Impredicative Definition
An 'impredicative' definition seems circular, because it uses the term being defined [Friend]
2. Reason / D. Definition / 10. Stipulative Definition
Classical definitions attempt to refer, but intuitionist/constructivist definitions actually create objects [Friend]
2. Reason / E. Argument / 5. Reductio ad Absurdum
Reductio ad absurdum proves an idea by showing that its denial produces contradiction [Friend]
2. Reason / F. Fallacies / 8. Category Mistake / a. Category mistakes
The sentence 'procrastination drinks quadruplicity' is meaningless, rather than false [Russell, by Orenstein]
3. Truth / A. Truth Problems / 8. Subjective Truth
Anti-realists see truth as our servant, and epistemically contrained [Friend]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
An argument 'satisfies' a function φx if φa is true [Russell]
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
The Darapti syllogism is fallacious: All M is S, all M is P, so some S is P' - but if there is no M? [Russell]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
In classical/realist logic the connectives are defined by truth-tables [Friend]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Double negation elimination is not valid in intuitionist logic [Friend]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic was developed for fictional or non-existent objects [Friend]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A 'proper subset' of A contains only members of A, but not all of them [Friend]
A 'powerset' is all the subsets of a set [Friend]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Set theory makes a minimum ontological claim, that the empty set exists [Friend]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
We can enumerate finite classes, but an intensional definition is needed for infinite classes [Russell]
Infinite sets correspond one-to-one with a subset [Friend]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Major set theories differ in their axioms, and also over the additional axioms of choice and infinity [Friend]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Members define a unique class, whereas defining characteristics are numerous [Russell]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity says 'for any inductive cardinal, there is a class having that many terms' [Russell]
We may assume that there are infinite collections, as there is no logical reason against them [Russell]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The British parliament has one representative selected from each constituency [Russell]
Choice shows that if any two cardinals are not equal, one must be the greater [Russell]
Choice is equivalent to the proposition that every class is well-ordered [Russell]
We can pick all the right or left boots, but socks need Choice to insure the representative class [Russell]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Reducibility: a family of functions is equivalent to a single type of function [Russell]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
Propositions about classes can be reduced to propositions about their defining functions [Russell]
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Russell's proposal was that only meaningful predicates have sets as their extensions [Russell, by Orenstein]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Classes are logical fictions, and are not part of the ultimate furniture of the world [Russell]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
All the propositions of logic are completely general [Russell]
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
In modern times, logic has become mathematical, and mathematics has become logical [Russell]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Logic can only assert hypothetical existence [Russell]
Logic is concerned with the real world just as truly as zoology [Russell]
Logic can be known a priori, without study of the actual world [Russell]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
The law of excluded middle is syntactic; it just says A or not-A, not whether they are true or false [Friend]
5. Theory of Logic / F. Referring in Logic / 1. Naming / b. Names as descriptive
Asking 'Did Homer exist?' is employing an abbreviated description [Russell]
Russell admitted that even names could also be used as descriptions [Russell, by Bach]
Names are really descriptions, except for a few words like 'this' and 'that' [Russell]
5. Theory of Logic / F. Referring in Logic / 1. Naming / f. Names eliminated
The only genuine proper names are 'this' and 'that' [Russell]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / a. Descriptions
'I met a unicorn' is meaningful, and so is 'unicorn', but 'a unicorn' is not [Russell]
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Intuitionists read the universal quantifier as "we have a procedure for checking every..." [Friend]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
Paradoxes can be solved by talking more loosely of 'classes' instead of 'sets' [Friend]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The Burali-Forti paradox asks whether the set of all ordinals is itself an ordinal [Friend]
6. Mathematics / A. Nature of Mathematics / 2. Geometry
If straight lines were like ratios they might intersect at a 'gap', and have no point in common [Russell]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
New numbers solve problems: negatives for subtraction, fractions for division, complex for equations [Russell]
The 'integers' are the positive and negative natural numbers, plus zero [Friend]
The 'rational' numbers are those representable as fractions [Friend]
A number is 'irrational' if it cannot be represented as a fraction [Friend]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Could a number just be something which occurs in a progression? [Russell, by Hart,WD]
The natural numbers are primitive, and the ordinals are up one level of abstraction [Friend]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Cardinal numbers answer 'how many?', with the order being irrelevant [Friend]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The 'real' numbers (rationals and irrationals combined) is the Continuum, which has no gaps [Friend]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A series can be 'Cut' in two, where the lower class has no maximum, the upper no minimum [Russell]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / j. Complex numbers
A complex number is simply an ordered couple of real numbers [Russell]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
Discovering that 1 is a number was difficult [Russell]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Numbers are needed for counting, so they need a meaning, and not just formal properties [Russell]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
The formal laws of arithmetic are the Commutative, the Associative and the Distributive [Russell]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Infinity and continuity used to be philosophy, but are now mathematics [Russell]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Raising omega to successive powers of omega reveal an infinity of infinities [Friend]
The first limit ordinal is omega (greater, but without predecessor), and the second is twice-omega [Friend]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Between any two rational numbers there is an infinite number of rational numbers [Friend]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Is mathematics based on sets, types, categories, models or topology? [Friend]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The definition of order needs a transitive relation, to leap over infinite intermediate terms [Russell]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Any founded, non-repeating series all reachable in steps will satisfy Peano's axioms [Russell]
'0', 'number' and 'successor' cannot be defined by Peano's axioms [Russell]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
A number is something which characterises collections of the same size [Russell]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical theories can be translated into the language of set theory [Friend]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
What matters is the logical interrelation of mathematical terms, not their intrinsic nature [Russell]
The number 8 in isolation from the other numbers is of no interest [Friend]
In structuralism the number 8 is not quite the same in different structures, only equivalent [Friend]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Are structures 'ante rem' (before reality), or are they 'in re' (grounded in physics)? [Friend]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Structuralist says maths concerns concepts about base objects, not base objects themselves [Friend]
Structuralism focuses on relations, predicates and functions, with objects being inessential [Friend]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
'In re' structuralism says that the process of abstraction is pattern-spotting [Friend]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
The big problem for platonists is epistemic: how do we perceive, intuit, know or detect mathematical facts? [Friend]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Mathematics should be treated as true whenever it is indispensable to our best physical theory [Friend]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Maybe numbers are adjectives, since 'ten men' grammatically resembles 'white men' [Russell]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
For Russell, numbers are sets of equivalent sets [Russell, by Benacerraf]
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Formalism is unconstrained, so cannot indicate importance, or directions for research [Friend]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Constructivism rejects too much mathematics [Friend]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionists typically retain bivalence but reject the law of excluded middle [Friend]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / e. Psychologism
There is always something psychological about inference [Russell]
7. Existence / A. Nature of Existence / 1. Nature of Existence
Existence can only be asserted of something described, not of something named [Russell]
7. Existence / D. Theories of Reality / 7. Fictionalism
Classes are logical fictions, made from defining characteristics [Russell]
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
If a relation is symmetrical and transitive, it has to be reflexive [Russell]
'Asymmetry' is incompatible with its converse; a is husband of b, so b can't be husband of a [Russell]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Structuralists call a mathematical 'object' simply a 'place in a structure' [Friend]
9. Objects / D. Essence of Objects / 3. Individual Essences
The essence of individuality is beyond description, and hence irrelevant to science [Russell]
9. Objects / E. Objects over Time / 8. Continuity of Rivers
Cratylus said you couldn't even step into the same river once [Cratylus, by Aristotle]
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
Inferring q from p only needs p to be true, and 'not-p or q' to be true [Russell]
All forms of implication are expressible as truth-functions [Russell]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
If something is true in all possible worlds then it is logically necessary [Russell]
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
Cratylus decided speech was hopeless, and his only expression was the movement of a finger [Cratylus, by Aristotle]
14. Science / B. Scientific Theories / 1. Scientific Theory
Mathematically expressed propositions are true of the world, but how to interpret them? [Russell]
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
Studying biology presumes the laws of chemistry, and it could never contradict them [Friend]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Concepts can be presented extensionally (as objects) or intensionally (as a characterization) [Friend]
19. Language / D. Propositions / 1. Propositions
Propositions are mainly verbal expressions of true or false, and perhaps also symbolic thoughts [Russell]