Combining Texts

All the ideas for 'fragments/reports', 'Travels in Four Dimensions' and 'The Evolution of Logic'

expand these ideas     |    start again     |     specify just one area for these texts


77 ideas

1. Philosophy / C. History of Philosophy / 4. Later European Philosophy / c. Eighteenth century philosophy
We are all post-Kantians, because he set the current agenda for philosophy [Hart,WD]
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / d. Philosophy as puzzles
The problems are the monuments of philosophy [Hart,WD]
1. Philosophy / F. Analytic Philosophy / 6. Logical Analysis
To study abstract problems, some knowledge of set theory is essential [Hart,WD]
3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
Tarski showed how we could have a correspondence theory of truth, without using 'facts' [Hart,WD]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Truth for sentences is satisfaction of formulae; for sentences, either all sequences satisfy it (true) or none do [Hart,WD]
3. Truth / F. Semantic Truth / 2. Semantic Truth
A first-order language has an infinity of T-sentences, which cannot add up to a definition of truth [Hart,WD]
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Conditional Proof: infer a conditional, if the consequent can be deduced from the antecedent [Hart,WD]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
∃y... is read as 'There exists an individual, call it y, such that...', and not 'There exists a y such that...' [Hart,WD]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Set theory articulates the concept of order (through relations) [Hart,WD]
Nowadays ZFC and NBG are the set theories; types are dead, and NF is only useful for the whole universe [Hart,WD]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
∈ relates across layers, while ⊆ relates within layers [Hart,WD]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Without the empty set we could not form a∩b without checking that a and b meet [Hart,WD]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
In the modern view, foundation is the heart of the way to do set theory [Hart,WD]
Foundation Axiom: an nonempty set has a member disjoint from it [Hart,WD]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can choose from finite and evident sets, but not from infinite opaque ones [Hart,WD]
With the Axiom of Choice every set can be well-ordered [Hart,WD]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
If we accept that V=L, it seems to settle all the open questions of set theory [Hart,WD]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory has trouble with comprehension, the claim that every predicate has an extension [Hart,WD]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception may not be necessary, and may have fixed points or infinitely descending chains [Hart,WD]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A 'partial ordering' is irreflexive and transitive; the sets are ordered, but not the subsets [Hart,WD]
A partial ordering becomes 'total' if any two members of its field are comparable [Hart,WD]
'Well-ordering' must have a least member, so it does the natural numbers but not the integers [Hart,WD]
Von Neumann defines α<β as α∈β [Hart,WD]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe sets should be rethought in terms of the even more basic categories [Hart,WD]
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
The universal quantifier can't really mean 'all', because there is no universal set [Hart,WD]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Modern model theory begins with the proof of Los's Conjecture in 1962 [Hart,WD]
Model theory studies how set theory can model sets of sentences [Hart,WD]
Model theory is mostly confined to first-order theories [Hart,WD]
Models are ways the world might be from a first-order point of view [Hart,WD]
5. Theory of Logic / K. Features of Logics / 6. Compactness
First-order logic is 'compact': consequences of a set are consequences of a finite subset [Hart,WD]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox: we succeed in referring to a number, with a term which says we can't do that [Hart,WD]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The Burali-Forti paradox is a crisis for Cantor's ordinals [Hart,WD]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The machinery used to solve the Liar can be rejigged to produce a new Liar [Hart,WD]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The less-than relation < well-orders, and partially orders, and totally orders the ordinal numbers [Hart,WD]
The axiom of infinity with separation gives a least limit ordinal ω [Hart,WD]
There are at least as many infinite cardinals as transfinite ordinals (because they will map) [Hart,WD]
Von Neumann's ordinals generalise into the transfinite better, because Zermelo's ω is a singleton [Hart,WD]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
19th century arithmetization of analysis isolated the real numbers from geometry [Hart,WD]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
We can establish truths about infinite numbers by means of induction [Hart,WD]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid has a unique parallel, spherical geometry has none, and saddle geometry has several [Hart,WD]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics makes existence claims, but philosophers usually say those are never analytic [Hart,WD]
7. Existence / A. Nature of Existence / 3. Being / d. Non-being
A thing which makes no difference seems unlikely to exist [Le Poidevin]
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
Mass words do not have plurals, or numerical adjectives, or use 'fewer' [Hart,WD]
12. Knowledge Sources / A. A Priori Knowledge / 2. Self-Evidence
Fregean self-evidence is an intrinsic property of basic truths, rules and definitions [Hart,WD]
12. Knowledge Sources / A. A Priori Knowledge / 11. Denying the A Priori
The failure of key assumptions in geometry, mereology and set theory throw doubt on the a priori [Hart,WD]
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
In addition to causal explanations, they can also be inferential, or definitional, or purposive [Le Poidevin]
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
The Fregean concept of GREEN is a function assigning true to green things, and false to the rest [Hart,WD]
19. Language / C. Assigning Meanings / 9. Indexical Semantics
We don't just describe a time as 'now' from a private viewpoint, but as a fact about the world [Le Poidevin]
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
26. Natural Theory / C. Causation / 1. Causation
The logical properties of causation are asymmetry, transitivity and irreflexivity [Le Poidevin]
27. Natural Reality / C. Space / 3. Points in Space
We can identify unoccupied points in space, so they must exist [Le Poidevin]
If spatial points exist, then they must be stationary, by definition [Le Poidevin]
27. Natural Reality / C. Space / 4. Substantival Space
Absolute space explains actual and potential positions, and geometrical truths [Le Poidevin]
27. Natural Reality / C. Space / 5. Relational Space
For relationists moving an object beyond the edge of space creates new space [Le Poidevin]
27. Natural Reality / C. Space / 6. Space-Time
We distinguish time from space, because it passes, and it has a unique present moment [Le Poidevin]
27. Natural Reality / D. Time / 1. Nature of Time / e. Eventless time
Since nothing occurs in a temporal vacuum, there is no way to measure its length [Le Poidevin]
Temporal vacuums would be unexperienced, unmeasured, and unending [Le Poidevin]
27. Natural Reality / D. Time / 2. Passage of Time / b. Rate of time
Time can't speed up or slow down, so it doesn't seem to be a 'process' [Le Poidevin]
27. Natural Reality / D. Time / 2. Passage of Time / f. Tenseless (B) series
To say that the past causes the present needs them both to be equally real [Le Poidevin]
The B-series doesn't seem to allow change [Le Poidevin]
If the B-universe is eternal, why am I trapped in a changing moment of it? [Le Poidevin]
27. Natural Reality / D. Time / 2. Passage of Time / g. Time's arrow
An ordered series can be undirected, but time favours moving from earlier to later [Le Poidevin]
If time's arrow is causal, how can there be non-simultaneous events that are causally unconnected? [Le Poidevin]
If time's arrow is psychological then different minds can impose different orders on events [Le Poidevin]
There are Thermodynamic, Psychological and Causal arrows of time [Le Poidevin]
Presumably if time's arrow is thermodynamic then time ends when entropy is complete [Le Poidevin]
If time is thermodynamic then entropy is necessary - but the theory says it is probable [Le Poidevin]
Time's arrow is not causal if there is no temporal gap between cause and effect [Le Poidevin]
27. Natural Reality / D. Time / 2. Passage of Time / i. Time and motion
Instantaneous motion is an intrinsic disposition to be elsewhere [Le Poidevin]
The dynamic view of motion says it is primitive, and not reducible to objects, properties and times [Le Poidevin]
27. Natural Reality / D. Time / 2. Passage of Time / k. Temporal truths
If the present could have diverse pasts, then past truths can't have present truthmakers [Le Poidevin]
27. Natural Reality / D. Time / 3. Parts of Time / a. Beginning of time
The present is the past/future boundary, so the first moment of time was not present [Le Poidevin]
27. Natural Reality / D. Time / 3. Parts of Time / c. Intervals
The primitive parts of time are intervals, not instants [Le Poidevin]
27. Natural Reality / D. Time / 3. Parts of Time / e. Present moment
If time is infinitely divisible, then the present must be infinitely short [Le Poidevin]
27. Natural Reality / E. Cosmology / 10. Multiverse
The multiverse is distinct time-series, as well as spaces [Le Poidevin]
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]
28. God / A. Divine Nature / 5. God and Time
How could a timeless God know what time it is? So could God be both timeless and omniscient? [Le Poidevin]