Combining Texts

All the ideas for 'fragments/reports', 'Set Theory' and 'Lives of Eminent Philosophers'

unexpand these ideas     |    start again     |     specify just one area for these texts


20 ideas

2. Reason / C. Styles of Reason / 1. Dialectic
Dialectic involves conversations with short questions and brief answers [Diog. Laertius]
     Full Idea: Dialectic is when men converse by putting short questions and giving brief answers to those who question them.
     From: Diogenes Laertius (Lives of Eminent Philosophers [c.250], 3.1.52)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / a. Agrippa's trilemma
Sceptics say demonstration depends on self-demonstrating things, or indemonstrable things [Diog. Laertius]
     Full Idea: Sceptics say that every demonstration depends on things which demonstrates themselves, or on things which can't be demonstrated.
     From: Diogenes Laertius (Lives of Eminent Philosophers [c.250], 9.Py.11)
     A reaction: This refers to two parts of Agrippa's Trilemma (the third being that demonstration could go on forever). He makes the first option sound very rationalist, rather than experiential.
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
Scepticism has two dogmas: that nothing is definable, and every argument has an opposite argument [Diog. Laertius]
     Full Idea: Sceptics actually assert two dogmas: that nothing should be defined, and that every argument has an opposite argument.
     From: Diogenes Laertius (Lives of Eminent Philosophers [c.250], 9.Py.11)
13. Knowledge Criteria / D. Scepticism / 6. Scepticism Critique
When sceptics say that nothing is definable, or all arguments have an opposite, they are being dogmatic [Diog. Laertius]
     Full Idea: When sceptics say that they define nothing, and that every argument has an opposite argument, they here give a positive definition, and assert a positive dogma.
     From: Diogenes Laertius (Lives of Eminent Philosophers [c.250], 9.11.11)
14. Science / C. Induction / 4. Reason in Induction
Induction moves from some truths to similar ones, by contraries or consequents [Diog. Laertius]
     Full Idea: Induction is an argument which by means of some admitted truths establishes naturally other truths which resemble them; there are two kinds, one proceeding from contraries, the other from consequents.
     From: Diogenes Laertius (Lives of Eminent Philosophers [c.250], 3.1.23)
22. Metaethics / C. The Good / 3. Pleasure / b. Types of pleasure
Cyrenaic pleasure is a motion, but Epicurean pleasure is a condition [Diog. Laertius]
     Full Idea: Cyrenaics place pleasure wholly in motion, whereas Epicurus admits it as a condition.
     From: Diogenes Laertius (Lives of Eminent Philosophers [c.250], 10.28)
     A reaction: Not a distinction we meet in modern discussions. Do events within the mind count as 'motion'? If so, these two agree. If not, I'd vote for Epicurus.
23. Ethics / A. Egoism / 1. Ethical Egoism
Cynics believe that when a man wishes for nothing he is like the gods [Diog. Laertius]
     Full Idea: Cynics believe that when a man wishes for nothing he is like the gods.
     From: Diogenes Laertius (Lives of Eminent Philosophers [c.250], 6.Men.3)
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.