Combining Texts

All the ideas for 'fragments/reports', 'Knowledge and the Philosophy of Number' and 'Principia Mathematica'

unexpand these ideas     |    start again     |     specify just one area for these texts


36 ideas

4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
The best known axiomatization of PL is Whitehead/Russell, with four axioms and two rules [Russell/Whitehead, by Hughes/Cresswell]
     Full Idea: The best known axiomatization of PL is Whitehead/Russell. There are four axioms: (p∨p)→p, q→(p∨q), (p→q)→(q∨p), and (q→r)→((p∨q)→(p∨r)), plus Substitution and Modus Ponens rules.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by GE Hughes/M Cresswell - An Introduction to Modal Logic Ch.1
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Russell saw Reducibility as legitimate for reducing classes to logic [Linsky,B on Russell/Whitehead]
     Full Idea: The axiom of Reducibility ...is crucial in the reduction of classes to logic, ...and seems to be a quite legitimate logical notion for Russell.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Bernard Linsky - Russell's Metaphysical Logic 6.4
     A reaction: This is an unusual defence of the axiom, which is usually presumed to have been kicked into the long grass by Quine. If one could reduce classes to logic, that would destroy the opposition to logicism in a single neat coup.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naďve logical sets
Predicativism says only predicated sets exist [Hossack]
     Full Idea: Predicativists doubt the existence of sets with no predicative definition.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 02.3)
     A reaction: This would imply that sets which encounter paradoxes when they try to be predicative do not therefore exist. Surely you can have a set of random objects which don't fall under a single predicate?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception has to appropriate Replacement, to justify the ordinals [Hossack]
     Full Idea: The iterative conception justifies Power Set, but cannot justify a satisfactory theory of von Neumann ordinals, so ZFC appropriates Replacement from NBG set theory.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 09.9)
     A reaction: The modern approach to axioms, where we want to prove something so we just add an axiom that does the job.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size justifies Replacement, but then has to appropriate Power Set [Hossack]
     Full Idea: The limitation of size conception of sets justifies the axiom of Replacement, but cannot justify Power Set, so NBG set theory appropriates the Power Set axiom from ZFC.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 09.9)
     A reaction: Which suggests that the Power Set axiom is not as indispensable as it at first appears to be.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Russell denies extensional sets, because the null can't be a collection, and the singleton is just its element [Russell/Whitehead, by Shapiro]
     Full Idea: Russell adduces two reasons against the extensional view of classes, namely the existence of the null class (which cannot very well be a collection), and the unit classes (which would have to be identical with their single elements).
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Stewart Shapiro - Structure and Ontology p.459
     A reaction: Gödel believes in the reality of classes. I have great sympathy with Russell, when people start to claim that sets are not just conveniences to help us think about things, but actual abstract entities. Is the singleton of my pencil is on this table?
We regard classes as mere symbolic or linguistic conveniences [Russell/Whitehead]
     Full Idea: Classes, so far as we introduce them, are merely symbolic or linguistic conveniences, not genuine objects.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.72), quoted by Penelope Maddy - Naturalism in Mathematics III.2
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Lewis's 'strict implication' preserved Russell's confusion of 'if...then' with implication [Quine on Russell/Whitehead]
     Full Idea: Russell call 'if...then' implication, when the material conditional is a much better account; C.I.Lewis (in founding modern modal logic) preserved Russell's confusion by creating 'strict implication', and called that implication.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Willard Quine - Reply to Professor Marcus p.177
     A reaction: [A compession of Quine's paragraph]. All of this assumes that logicians can give an accurate account of what if...then means, when ordinary usage is broad and vague. Strict implication seems to drain all the normal meaning out of 'if...then'.
Russell's implication means that random sentences imply one another [Lewis,CI on Russell/Whitehead]
     Full Idea: In Mr Russell's idea of implication, if twenty random sentences from a newspaper were put in a hat, and two of them drawn at random, one will certainly imply the other, and it is an even bet the implication will be mutual.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by C.I. Lewis - A Pragmatic Conception of the A Priori p.366
     A reaction: This sort of lament leads modern logicians to suggest 'relevance' as an important criterion. It certainly seems odd that so-called 'classical logic' should contain a principle so at variance with everyday reasoning.
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Russell unusually saw logic as 'interpreted' (though very general, and neutral) [Russell/Whitehead, by Linsky,B]
     Full Idea: Russell did not view logic as an uninterpreted calculus awaiting interpretations [the modern view]. Rather, logic is a single 'interpreted' body of a priori truths, of propositions rather than sentence forms - but maximally general and topic neutral.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Bernard Linsky - Russell's Metaphysical Logic 1
     A reaction: This is the view which Wittgenstein challenged, saying logic is just conventional. Linsky claims that Russell's logicism is much more plausible, once you understand his view of logic.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / d. and
The connective 'and' can have an order-sensitive meaning, as 'and then' [Hossack]
     Full Idea: The sentence connective 'and' also has an order-sensitive meaning, when it means something like 'and then'.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.4)
     A reaction: This is support the idea that orders are a feature of reality, just as much as possible concatenation. Relational predicates, he says, refer to series rather than to individuals. Nice point.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
In 'Principia' a new abstract theory of relations appeared, and was applied [Russell/Whitehead, by Gödel]
     Full Idea: In 'Principia' a young science was enriched with a new abstract theory of relations, ..and not only Cantor's set theory but also ordinary arithmetic and the theory of measurement are treated from this abstract relational standpoint.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Kurt Gödel - Russell's Mathematical Logic p.448
     A reaction: I presume this is accounting for relations in terms of ordered sets.
'Before' and 'after' are not two relations, but one relation with two orders [Hossack]
     Full Idea: The reason the two predicates 'before' and 'after' are needed is not to express different relations, but to indicate its order. Since there can be difference of order without difference of relation, the nature of relations is not the source of order.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.3)
     A reaction: This point is to refute Russell's 1903 claim that order arises from the nature of relations. Hossack claims that it is ordered series which are basic. I'm inclined to agree with him.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A real number is the class of rationals less than the number [Russell/Whitehead, by Shapiro]
     Full Idea: For Russell the real number 2 is the class of rationals less than 2 (i.e. 2/1). ...Notice that on this definition, real numbers are classes of rational numbers.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Stewart Shapiro - Thinking About Mathematics 5.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Transfinite ordinals are needed in proof theory, and for recursive functions and computability [Hossack]
     Full Idea: The transfinite ordinal numbers are important in the theory of proofs, and essential in the theory of recursive functions and computability. Mathematics would be incomplete without them.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.1)
     A reaction: Hossack offers this as proof that the numbers are not human conceptual creations, but must exist beyond the range of our intellects. Hm.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / a. Defining numbers
Russell takes numbers to be classes, but then reduces the classes to numerical quantifiers [Russell/Whitehead, by Bostock]
     Full Idea: Although Russell takes numbers to be certain classes, his 'no-class' theory then eliminates all mention of classes in favour of the 'propositional functions' that define them; and in the case of the numbers these just are the numerical quantifiers.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by David Bostock - Philosophy of Mathematics 9.B.4
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Numbers are properties, not sets (because numbers are magnitudes) [Hossack]
     Full Idea: I propose that numbers are properties, not sets. Magnitudes are a kind of property, and numbers are magnitudes. …Natural numbers are properties of pluralities, positive reals of continua, and ordinals of series.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], Intro)
     A reaction: Interesting! Since time can have a magnitude (three weeks) just as liquids can (three litres), it is not clear that there is a single natural property we can label 'magnitude'. Anything we can manage to measure has a magnitude.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
We can only mentally construct potential infinities, but maths needs actual infinities [Hossack]
     Full Idea: Numbers cannot be mental objects constructed by our own minds: there exists at most a potential infinity of mental constructions, whereas the axioms of mathematics require an actual infinity of numbers.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], Intro 2)
     A reaction: Doubt this, but don't know enough to refute it. Actual infinities were a fairly late addition to maths, I think. I would think treating fictional complete infinities as real would be sufficient for the job. Like journeys which include imagined roads.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Russell and Whitehead took arithmetic to be higher-order logic [Russell/Whitehead, by Hodes]
     Full Idea: Russell and Whitehead took arithmetic to be higher-order logic, ..and came close to identifying numbers with numerical quantifiers.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Harold Hodes - Logicism and Ontological Commits. of Arithmetic p.148
     A reaction: The point here is 'higher-order'.
Russell and Whitehead were not realists, but embraced nearly all of maths in logic [Russell/Whitehead, by Friend]
     Full Idea: Unlike Frege, Russell and Whitehead were not realists about mathematical objects, and whereas Frege thought that only arithmetic and analysis are branches of logic, they think the vast majority of mathematics (including geometry) is essentially logical.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Michčle Friend - Introducing the Philosophy of Mathematics 3.1
     A reaction: If, in essence, Descartes reduced geometry to algebra (by inventing co-ordinates), then geometry ought to be included. It is characteristic of Russell's hubris to want to embrace everything.
'Principia' lacks a precise statement of the syntax [Gödel on Russell/Whitehead]
     Full Idea: What is missing, above all, in 'Principia', is a precise statement of the syntax of the formalism.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Kurt Gödel - Russell's Mathematical Logic p.448
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
The ramified theory of types used propositional functions, and covered bound variables [Russell/Whitehead, by George/Velleman]
     Full Idea: Russell and Whitehead's ramified theory of types worked not with sets, but with propositional functions (similar to Frege's concepts), with a more restrictive assignment of variables, insisting that bound, as well as free, variables be of lower type.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.3
     A reaction: I don't fully understand this (and no one seems much interested any more), but I think variables are a key notion, and there is something interesting going on here. I am intrigued by ordinary language which behaves like variables.
The Russell/Whitehead type theory was limited, and was not really logic [Friend on Russell/Whitehead]
     Full Idea: The Russell/Whitehead type theory reduces mathematics to a consistent founding discipline, but is criticised for not really being logic. They could not prove the existence of infinite sets, and introduced a non-logical 'axiom of reducibility'.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Michčle Friend - Introducing the Philosophy of Mathematics 3.6
     A reaction: To have reduced most of mathematics to a founding discipline sounds like quite an achievement, and its failure to be based in pure logic doesn't sound too bad. However, it seems to reduce some maths to just other maths.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
In 'Principia Mathematica', logic is exceeded in the axioms of infinity and reducibility, and in the domains [Bernays on Russell/Whitehead]
     Full Idea: In the system of 'Principia Mathematica', it is not only the axioms of infinity and reducibility which go beyond pure logic, but also the initial conception of a universal domain of individuals and of a domain of predicates.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913], p.267) by Paul Bernays - On Platonism in Mathematics p.267
     A reaction: This sort of criticism seems to be the real collapse of the logicist programme, rather than Russell's paradox, or Gödel's Incompleteness Theorems. It just became impossible to stick strictly to logic in the reduction of arithmetic.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Russell and Whitehead consider the paradoxes to indicate that we create mathematical reality [Russell/Whitehead, by Friend]
     Full Idea: Russell and Whitehead are particularly careful to avoid paradox, and consider the paradoxes to indicate that we create mathematical reality.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Michčle Friend - Introducing the Philosophy of Mathematics 3.1
     A reaction: This strikes me as quite a good argument. It is certainly counterintuitive that reality, and abstractions from reality, would contain contradictions. The realist view would be that we have paradoxes because we have misdescribed the facts.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
To avoid vicious circularity Russell produced ramified type theory, but Ramsey simplified it [Russell/Whitehead, by Shapiro]
     Full Idea: Russell insisted on the vicious circle principle, and thus rejected impredicative definitions, which resulted in an unwieldy ramified type theory, with the ad hoc axiom of reducibility. Ramsey's simpler theory was impredicative and avoided the axiom.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Stewart Shapiro - Thinking About Mathematics 5.2
     A reaction: Nowadays the theory of types seems to have been given up, possibly because it has no real attraction if it lacks the strict character which Russell aspired to.
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
An object is identical with itself, and no different indiscernible object can share that [Russell/Whitehead, by Adams,RM]
     Full Idea: Trivially, the Identity of Indiscernibles says that two individuals, Castor and Pollux, cannot have all properties in common. For Castor must have the properties of being identical with Castor and not being identical with Pollux, which Pollux can't share.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913], I p.57) by Robert Merrihew Adams - Primitive Thisness and Primitive Identity 2
     A reaction: I suspect that either the property of being identical with itself is quite vacuous, or it is parasytic on primitive identity, or it is the criterion which is actually used to define identity. Either way, I don't find this claim very illuminating.
12. Knowledge Sources / E. Direct Knowledge / 2. Intuition
Russell showed, through the paradoxes, that our basic logical intuitions are self-contradictory [Russell/Whitehead, by Gödel]
     Full Idea: By analyzing the paradoxes to which Cantor's set theory had led, ..Russell brought to light the amazing fact that our logical intuitions (concerning such notions as truth, concept, being, class) are self-contradictory.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Kurt Gödel - Russell's Mathematical Logic p.452
     A reaction: The main intuition that failed was, I take it, that every concept has an extension, that is, there are always objects which will or could fall under the concept.
18. Thought / A. Modes of Thought / 6. Judgement / a. Nature of Judgement
The multiple relations theory says assertions about propositions are about their ingredients [Russell/Whitehead, by Linsky,B]
     Full Idea: The multiple relations theory of judgement proposes that assertions about propositions are dependent upon genuine facts involving belief and other attitude relations, subjects of those attitudes, and the constituents of the belief.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Bernard Linsky - Russell's Metaphysical Logic 7.2
     A reaction: This seems to require a commitment to universals (especially relations) with which we can be directly acquainted. I prefer propositions, but as mental entities, not platonic entities.
A judgement is a complex entity, of mind and various objects [Russell/Whitehead]
     Full Idea: When a judgement occurs, there is a certain complex entity, composed of the mind and the various objects of the judgement.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.44)
     A reaction: This is Russell's multiple-relation theory of judgement, which replaced his earlier belief in unified propositions (now 'false abstractions'). He seems to have accepted Locke's view, that the act of judgement produces the unity.
The meaning of 'Socrates is human' is completed by a judgement [Russell/Whitehead]
     Full Idea: When I judge 'Socrates is human', the meaning is completed by the act of judging.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.44), quoted by Michael Morris - Guidebook to Wittgenstein's Tractatus
     A reaction: Morris says this is Russell's multiple-relations theory of judgement. The theory accompanies the rejection of the concept of the unified proposition. When I hear 'Socrates had a mole on his shoulder' I get the meaning without judging.
The multiple relation theory of judgement couldn't explain the unity of sentences [Morris,M on Russell/Whitehead]
     Full Idea: When Russell moved to his multiple relation theory of judgement …he then faced difficulties making sense of the unity of sentences.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913], p.44) by Michael Morris - Guidebook to Wittgenstein's Tractatus 3A
     A reaction: Roughly, he seems committed to saying that there is only unity if you think there is unity; there is no unity in a sentence prior to the act of judgement.
Only the act of judging completes the meaning of a statement [Russell/Whitehead]
     Full Idea: When I judge 'Socrates is human', the meaning is completed by the act of judging, and we no longer have an incomplete symbol.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.44), quoted by J. Alberto Coffa - The Semantic Tradition from Kant to Carnap
     A reaction: Personally I would have thought that you needed to know the meaning properly before you could make the judgement, but then he is Bertrand Russell and I'm not.
19. Language / D. Propositions / 3. Concrete Propositions
Propositions as objects of judgement don't exist, because we judge several objects, not one [Russell/Whitehead]
     Full Idea: A 'proposition', in the sense in which a proposition is supposed to be the object of a judgement, is a false abstraction, because a judgement has several objects, not one.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.44), quoted by Michael Morris - Guidebook to Wittgenstein's Tractatus 2E
     A reaction: This is the rejection of the 'Russellian' theory of propositions, in favour of his multiple-relations theory of judgement. But why don't the related objects add up to a proposition about a state of affairs?
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.