Combining Texts

All the ideas for 'fragments/reports', 'Elements of Set Theory' and 'Mechanisms'

unexpand these ideas     |    start again     |     specify just one area for these texts


17 ideas

4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
∈ says the whole set is in the other; ⊆ says the members of the subset are in the other [Enderton]
     Full Idea: To know if A ∈ B, we look at the set A as a single object, and check if it is among B's members. But if we want to know whether A ⊆ B then we must open up set A and check whether its various members are among the members of B.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1:04)
     A reaction: This idea is one of the key ideas to grasp if you are going to get the hang of set theory. John ∈ USA ∈ UN, but John is not a member of the UN, because he isn't a country. See Idea 12337 for a special case.
The 'ordered pair' <x,y> is defined to be {{x}, {x,y}} [Enderton]
     Full Idea: The 'ordered pair' <x,y> is defined to be {{x}, {x,y}}; hence it can be proved that <u,v> = <x,y> iff u = x and v = y (given by Kuratowski in 1921). ...The definition is somewhat arbitrary, and others could be used.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:36)
     A reaction: This looks to me like one of those regular cases where the formal definitions capture all the logical behaviour of the concept that are required for inference, while failing to fully capture the concept for ordinary conversation.
A 'linear or total ordering' must be transitive and satisfy trichotomy [Enderton]
     Full Idea: A 'linear ordering' (or 'total ordering') on A is a binary relation R meeting two conditions: R is transitive (of xRy and yRz, the xRz), and R satisfies trichotomy (either xRy or x=y or yRx).
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:62)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Note that {Φ} =/= Φ, because Φ ∈ {Φ} but Φ ∉ Φ [Enderton]
     Full Idea: Note that {Φ} =/= Φ, because Φ ∈ {Φ} but Φ ∉ Φ. A man with an empty container is better off than a man with nothing.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1.03)
The empty set may look pointless, but many sets can be constructed from it [Enderton]
     Full Idea: It might be thought at first that the empty set would be a rather useless or even frivolous set to mention, but from the empty set by various set-theoretic operations a surprising array of sets will be constructed.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1:02)
     A reaction: This nicely sums up the ontological commitments of mathematics - that we will accept absolutely anything, as long as we can have some fun with it. Sets are an abstraction from reality, and the empty set is the very idea of that abstraction.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
The singleton is defined using the pairing axiom (as {x,x}) [Enderton]
     Full Idea: Given any x we have the singleton {x}, which is defined by the pairing axiom to be {x,x}.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 2:19)
     A reaction: An interesting contrivance which is obviously aimed at keeping the axioms to a minimum. If you can do it intuitively with a new axiom, or unintuitively with an existing axiom - prefer the latter!
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Fraenkel added Replacement, to give a theory of ordinal numbers [Enderton]
     Full Idea: It was observed by several people that for a satisfactory theory of ordinal numbers, Zermelo's axioms required strengthening. The Axiom of Replacement was proposed by Fraenkel and others, giving rise to the Zermelo-Fraenkel (ZF) axioms.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1:15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can only define functions if Choice tells us which items are involved [Enderton]
     Full Idea: For functions, we know that for any y there exists an appropriate x, but we can't yet form a function H, as we have no way of defining one particular choice of x. Hence we need the axiom of choice.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:48)
14. Science / B. Scientific Theories / 2. Aim of Science
Empiricist theories are sets of laws, which give explanations and reductions [Glennan]
     Full Idea: In the empiricist tradition theories were understood to be deductive closures of sets of laws, explanations were understood as arguments from covering laws, and reduction was understood as a deductive relationship between laws of different theories.
     From: Stuart Glennan (Mechanisms [2008], 'Intro')
     A reaction: A lovely crisp summary of the whole tradition of philosophy of science from Comte through to Hempel. Mechanism and essentialism are the new players in the game.
14. Science / D. Explanation / 2. Types of Explanation / i. Explanations by mechanism
Modern mechanism need parts with spatial, temporal and function facts, and diagrams [Glennan]
     Full Idea: Modern champions of mechanisms say models should identify both the parts and their spatial, temporal and functional organisation, ...and the practical importance of diagrams in addition to or in place of linguistic representations of mechanisms.
     From: Stuart Glennan (Mechanisms [2008], 'Discover')
     A reaction: Apparently chemists obtain much more refined models by using mathematics than they did by diagrams or 3D models (let alone verbal descriptions). For that reason, I'm thinking that 'model' might be a better term than 'mechanism'.
Mechanistic philosophy of science is an alternative to the empiricist law-based tradition [Glennan]
     Full Idea: To a significant degree, a mechanistic philosophy of science can be seen as an alternative to an earlier logical empiricist tradition in philosophy of science that gave pride of place to laws of nature.
     From: Stuart Glennan (Mechanisms [2008], 'Intro')
     A reaction: Lovely! Someone who actually spells out what's going on here. Most philosophers are far too coy about explaining what their real game is. Mechanism is fine in chemistry and biology. How about in 'mathematical' physics, or sociology?
Mechanisms are either systems of parts or sequences of activities [Glennan]
     Full Idea: There are two sorts of mechanisms: systems consist of collections of parts that interact to produce some behaviour, and processes are sequences of activities which produce some outcome.
     From: Stuart Glennan (Mechanisms [2008], 'Intro')
     A reaction: [compressed] The second one is important because it is more generic, and under that account all kinds the features of the world that need to be explained can be subsumed. E.g. hyperinflation in an economy is a 'mechanism'.
17th century mechanists explained everything by the kinetic physical fundamentals [Glennan]
     Full Idea: 17th century mechanists said that interactions governed by chemical, electrical or gravitational forces would have to be explicable in terms of the operation of some atomistic (or corpuscular) kinetic mechanism.
     From: Stuart Glennan (Mechanisms [2008], 'Intro')
     A reaction: Glennan says science has rejected this, so modern mechanists do not reduce mechanisms to anything in particular.
Unlike the lawlike approach, mechanistic explanation can allow for exceptions [Glennan]
     Full Idea: One of the advantages of the move from nomological to mechanistic modes of explanation is that the latter allows for explanations involving exception-ridden generalizations.
     From: Stuart Glennan (Mechanisms [2008], 'regular')
     A reaction: The lawlike approach has endless problems with 'ceteris paribus' ('all things being equal') laws, where specifying all the other 'things' seems a bit tricky.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
26. Natural Theory / C. Causation / 4. Naturalised causation
Since causal events are related by mechanisms, causation can be analysed in that way [Glennan]
     Full Idea: Causation can be analyzed in terms of mechanisms because (except for fundamental causal interactions) causally related events will be connected by intervening mechanisms.
     From: Stuart Glennan (Mechanisms [2008], 'causation')
     A reaction: This won't give us the metaphysics of causation (which concerns the fundamentals), but this strikes me as a very coherent and interesting proposal. He mentions electron interaction as non-mechanistic causation.
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.