Combining Texts

All the ideas for 'fragments/reports', 'The Approach to Metaphysics' and 'Remarks on axiomatised set theory'

unexpand these ideas     |    start again     |     specify just one area for these texts


7 ideas

1. Philosophy / E. Nature of Metaphysics / 4. Metaphysics as Science
Metaphysics rests on observations, but ones so common we hardly notice them [Peirce]
     Full Idea: Metaphysics really rests on observations, whether consciously or not. The only reason this is not recognised is that it rests upon kinds of phenomena with which every man's experience is so saturated that he pays no particular attention to them.
     From: Charles Sanders Peirce (The Approach to Metaphysics [1898], p.311)
     A reaction: I think this is entirely right. I would say that the only thing that distinguishes metaphysical thought is its extreme level of generality, which makes it very hard to substantiate, because it is so remote from its evidential base.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Axiomatising set theory makes it all relative [Skolem]
     Full Idea: Axiomatising set theory leads to a relativity of set-theoretic notions, and this relativity is inseparably bound up with every thoroughgoing axiomatisation.
     From: Thoralf Skolem (Remarks on axiomatised set theory [1922], p.296)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If a 1st-order proposition is satisfied, it is satisfied in a denumerably infinite domain [Skolem]
     Full Idea: Löwenheim's theorem reads as follows: If a first-order proposition is satisfied in any domain at all, it is already satisfied in a denumerably infinite domain.
     From: Thoralf Skolem (Remarks on axiomatised set theory [1922], p.293)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Integers and induction are clear as foundations, but set-theory axioms certainly aren't [Skolem]
     Full Idea: The initial foundations should be immediately clear, natural and not open to question. This is satisfied by the notion of integer and by inductive inference, by it is not satisfied by the axioms of Zermelo, or anything else of that kind.
     From: Thoralf Skolem (Remarks on axiomatised set theory [1922], p.299)
     A reaction: This is a plea (endorsed by Almog) that the integers themselves should be taken as primitive and foundational. I would say that the idea of successor is more primitive than the integers.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Mathematician want performable operations, not propositions about objects [Skolem]
     Full Idea: Most mathematicians want mathematics to deal, ultimately, with performable computing operations, and not to consist of formal propositions about objects called this or that.
     From: Thoralf Skolem (Remarks on axiomatised set theory [1922], p.300)
25. Social Practice / E. Policies / 5. Education / b. Education principles
Learned men gain more in one day than others do in a lifetime [Posidonius]
     Full Idea: In a single day there lies open to men of learning more than there ever does to the unenlightened in the longest of lifetimes.
     From: Posidonius (fragments/reports [c.95 BCE]), quoted by Seneca the Younger - Letters from a Stoic 078
     A reaction: These remarks endorsing the infinite superiority of the educated to the uneducated seem to have been popular in late antiquity. It tends to be the religions which discourage great learning, especially in their emphasis on a single book.
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Time is an interval of motion, or the measure of speed [Posidonius, by Stobaeus]
     Full Idea: Posidonius defined time thus: it is an interval of motion, or the measure of speed and slowness.
     From: report of Posidonius (fragments/reports [c.95 BCE]) by John Stobaeus - Anthology 1.08.42
     A reaction: Hm. Can we define motion or speed without alluding to time? Looks like we have to define them as a conjoined pair, which means we cannot fully understand either of them.