Combining Texts

All the ideas for 'Parmenides', 'Culture and Value' and 'Philosophy of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


70 ideas

1. Philosophy / A. Wisdom / 2. Wise People
While faith is a passion (as Kierkegaard says), wisdom is passionless [Wittgenstein]
     Full Idea: Wisdom is passionless. But faith by contrast is what Kierkegaard calls a passion.
     From: Ludwig Wittgenstein (Culture and Value [1945], 53e)
     A reaction: [Idea from SY] Personally I don't agree that wisdom is passionless. At the very least, Aristotle allows the wise person to be appropriately angry. [PG]
2. Reason / A. Nature of Reason / 1. On Reason
When questions are doubtful we should concentrate not on objects but on ideas of the intellect [Plato]
     Full Idea: Doubtful questions should not be discussed in terms of visible objects or in relation to them, but only with reference to ideas conceived by the intellect.
     From: Plato (Parmenides [c.364 BCE], 135e)
2. Reason / B. Laws of Thought / 5. Opposites
Opposites are as unlike as possible [Plato]
     Full Idea: Opposites are as unlike as possible.
     From: Plato (Parmenides [c.364 BCE], 159a)
2. Reason / C. Styles of Reason / 1. Dialectic
Plato's 'Parmenides' is the greatest artistic achievement of the ancient dialectic [Hegel on Plato]
     Full Idea: Plato's 'Parmenides' is the greatest artistic achievement of the ancient dialectic.
     From: comment on Plato (Parmenides [c.364 BCE]) by Georg W.F.Hegel - Phenomenology of Spirit Pref 71
     A reaction: It is a long way from the analytic tradition of philosophy to be singling out a classic text for its 'artistic' achievement. Eventually we may even look back on, say, Kripke's 'Naming and Necessity' and see it in that light.
2. Reason / D. Definition / 2. Aims of Definition
Definitions should be replaceable by primitives, and should not be creative [Brown,JR]
     Full Idea: The standard requirement of definitions involves 'eliminability' (any defined terms must be replaceable by primitives) and 'non-creativity' (proofs of theorems should not depend on the definition).
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: [He cites Russell and Whitehead as a source for this view] This is the austere view of the mathematician or logician. But almost every abstract concept that we use was actually defined in a creative way.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory says that natural numbers are an actual infinity (to accommodate their powerset) [Brown,JR]
     Full Idea: The set-theory account of infinity doesn't just say that we can keep on counting, but that the natural numbers are an actual infinite set. This is necessary to make sense of the powerset of ω, as the set of all its subsets, and thus even bigger.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: I don't personally find this to be sufficient reason to commit myself to the existence of actual infinities. In fact I have growing doubts about the whole role of set theory in philosophy of mathematics. Shows how much I know.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory assumed that there is a set for every condition [Brown,JR]
     Full Idea: In the early versions of set theory ('naïve' set theory), the axiom of comprehension assumed that for any condition there is a set of objects satisfying that condition (so P(x)↔x∈{x:P(x)}), but this led directly to Russell's Paradox.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: How rarely any philosophers state this problem clearly (as Brown does here). This is incredibly important for our understanding of how we classify the world. I'm tempted to just ignore Russell, and treat sets in a natural and sensible way.
Nowadays conditions are only defined on existing sets [Brown,JR]
     Full Idea: In current set theory Russell's Paradox is avoided by saying that a condition can only be defined on already existing sets.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: A response to Idea 9613. This leaves us with no account of how sets are created, so we have the modern notion that absolutely any grouping of daft things is a perfectly good set. The logicians seem to have hijacked common sense.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The 'iterative' view says sets start with the empty set and build up [Brown,JR]
     Full Idea: The modern 'iterative' concept of a set starts with the empty set φ (or unsetted individuals), then uses set-forming operations (characterized by the axioms) to build up ever more complex sets.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: The only sets in our system will be those we can construct, rather than anything accepted intuitively. It is more about building an elaborate machine that works than about giving a good model of reality.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
A flock of birds is not a set, because a set cannot go anywhere [Brown,JR]
     Full Idea: Neither a flock of birds nor a pack of wolves is strictly a set, since a flock can fly south, and a pack can be on the prowl, whereas sets go nowhere and menace no one.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: To say that the pack menaced you would presumably be to commit the fallacy of composition. Doesn't the number 64 have properties which its set-theoretic elements (whatever we decide they are) will lack?
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
If a proposition is false, then its negation is true [Brown,JR]
     Full Idea: The law of excluded middle says if a proposition is false, then its negation is true
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 1)
     A reaction: Surely that is the best statement of the law? How do you write that down? ¬(P)→¬P? No, because it is a semantic claim, not a syntactic claim, so a truth table captures it. Semantic claims are bigger than syntactic claims.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are either self-evident, or stipulations, or fallible attempts [Brown,JR]
     Full Idea: The three views one could adopt concerning axioms are that they are self-evident truths, or that they are arbitrary stipulations, or that they are fallible attempts to describe how things are.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch.10)
     A reaction: Presumably modern platonists like the third version, with others choosing the second, and hardly anyone now having the confidence to embrace the first.
5. Theory of Logic / L. Paradox / 3. Antinomies
Plato found antinomies in ideas, Kant in space and time, and Bradley in relations [Plato, by Ryle]
     Full Idea: Plato (in 'Parmenides') shows that the theory that 'Eide' are substances, and Kant that space and time are substances, and Bradley that relations are substances, all lead to aninomies.
     From: report of Plato (Parmenides [c.364 BCE]) by Gilbert Ryle - Are there propositions? 'Objections'
Plato's 'Parmenides' is perhaps the best collection of antinomies ever made [Russell on Plato]
     Full Idea: Plato's 'Parmenides' is perhaps the best collection of antinomies ever made.
     From: comment on Plato (Parmenides [c.364 BCE]) by Bertrand Russell - The Principles of Mathematics §337
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox finds a contradiction in the naming of huge numbers [Brown,JR]
     Full Idea: Berry's Paradox refers to 'the least integer not namable in fewer than nineteen syllables' - a paradox because it has just been named in eighteen syllables.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: Apparently George Boolos used this quirky idea as a basis for a new and more streamlined proof of Gödel's Theorem. Don't tell me you don't find that impressive.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is the only place where we are sure we are right [Brown,JR]
     Full Idea: Mathematics seems to be the one and only place where we humans can be absolutely sure that we got it right.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 1)
     A reaction: Apart from death and taxes, that is. Personally I am more certain of the keyboard I am typing on than I am of Pythagoras's Theorem, but the experts seem pretty confident about the number stuff.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
'There are two apples' can be expressed logically, with no mention of numbers [Brown,JR]
     Full Idea: 'There are two apples' can be recast as 'x is an apple and y is an apple, and x isn't y, and if z is an apple it is the same as x or y', which makes no appeal at all to mathematics.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: He cites this as the basis of Hartry Field's claim that science can be done without numbers. The logic is ∃x∃y∀z(Ax&Ay&(x¬=y)&(Az→z=x∨z=y)).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / n. Pi
π is a 'transcendental' number, because it is not the solution of an equation [Brown,JR]
     Full Idea: The number π is not only irrational, but it is also (unlike √2) a 'transcendental' number, because it is not the solution of an algebraic equation.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch.10)
     A reaction: So is that a superficial property, or a profound one? Answers on a post card.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Mathematics represents the world through structurally similar models. [Brown,JR]
     Full Idea: Mathematics hooks onto the world by providing representations in the form of structurally similar models.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: This is Brown's conclusion. It needs notions of mapping, one-to-one correspondence, and similarity. I like the idea of a 'model', as used in both logic and mathematics, and children's hobbies. The mind is a model-making machine.
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
There is no limit to how many ways something can be proved in mathematics [Brown,JR]
     Full Idea: I'm tempted to say that mathematics is so rich that there are indefinitely many ways to prove anything - verbal/symbolic derivations and pictures are just two.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 9)
     A reaction: Brown has been defending pictures as a form of proof. I wonder how long his list would be, if we challenged him to give more details? Some people have very low standards of proof.
Computers played an essential role in proving the four-colour theorem of maps [Brown,JR]
     Full Idea: The celebrity of the famous proof in 1976 of the four-colour theorem of maps is that a computer played an essential role in the proof.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch.10)
     A reaction: The problem concerns the reliability of the computers, but then all the people who check a traditional proof might also be unreliable. Quis custodet custodies?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Set theory may represent all of mathematics, without actually being mathematics [Brown,JR]
     Full Idea: Maybe all of mathematics can be represented in set theory, but we should not think that mathematics is set theory. Functions can be represented as order pairs, but perhaps that is not what functions really are.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: This seems to me to be the correct view of the situation. If 2 is represented as {φ,{φ}}, why is that asymmetrical? The first digit seems to be the senior and original partner, but how could the digits of 2 differ from one another?
When graphs are defined set-theoretically, that won't cover unlabelled graphs [Brown,JR]
     Full Idea: The basic definition of a graph can be given in set-theoretic terms,...but then what could an unlabelled graph be?
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: An unlabelled graph will at least need a verbal description for it to have any significance at all. My daily mood-swings look like this....
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
To see a structure in something, we must already have the idea of the structure [Brown,JR]
     Full Idea: Epistemology is a big worry for structuralists. ..To conjecture that something has a particular structure, we must already have conceived of the idea of the structure itself; we cannot be discovering structures by conjecturing them.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: This has to be a crucial area of discussion. Do we have our heads full of abstract structures before we look out of the window? Externalism about the mind is important here; mind and world are not utterly distinct things.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Sets seem basic to mathematics, but they don't suit structuralism [Brown,JR]
     Full Idea: Set theory is at the very heart of mathematics; it may even be all there is to mathematics. The notion of set, however, seems quite contrary to the spirit of structuralism.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: So much the worse for sets, I say. You can, for example, define ordinality in terms of sets, but that is no good if ordinality is basic to the nature of numbers, rather than a later addition.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
One is, so numbers exist, so endless numbers exist, and each one must partake of being [Plato]
     Full Idea: If one is, there must also necessarily be number - Necessarily - But if there is number, there would be many, and an unlimited multitude of beings. ..So if all partakes of being, each part of number would also partake of it.
     From: Plato (Parmenides [c.364 BCE], 144a)
     A reaction: This seems to commit to numbers having being, then to too many numbers, and hence to too much being - but without backing down and wondering whether numbers had being after all. Aristotle disagreed.
The irrationality of root-2 was achieved by intellect, not experience [Brown,JR]
     Full Idea: We could not discover irrational numbers by physical measurement. The discovery of the irrationality of the square root of two was an intellectual achievement, not at all connected to sense experience.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 1)
     A reaction: Brown declares himself a platonist, and this is clearly a key argument for him, and rather a good one. Hm. I'll get back to you on this one...
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
There is an infinity of mathematical objects, so they can't be physical [Brown,JR]
     Full Idea: A simple argument makes it clear that all mathematical arguments are abstract: there are infinitely many numbers, but only a finite number of physical entities, so most mathematical objects are non-physical. The best assumption is that they all are.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: This, it seems to me, is where constructivists score well (cf. Idea 9608). I don't have an infinity of bricks to build an infinity of houses, but I can imagine that the bricks just keep coming if I need them. Imagination is what is unbounded.
Numbers are not abstracted from particulars, because each number is a particular [Brown,JR]
     Full Idea: Numbers are not 'abstract' (in the old sense, of universals abstracted from particulars), since each of the integers is a unique individual, a particular, not a universal.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: An interesting observation which I have not seen directly stated before. Compare Idea 645. I suspect that numbers should be thought of as higher-order abstractions, which don't behave like normal universals (i.e. they're not distributed).
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Empiricists base numbers on objects, Platonists base them on properties [Brown,JR]
     Full Idea: Perhaps, instead of objects, numbers are associated with properties of objects. Basing them on objects is strongly empiricist and uses first-order logic, whereas the latter view is somewhat Platonistic, and uses second-order logic.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: I don't seem to have a view on this. You can count tomatoes, or you can count red objects, or even 'instances of red'. Numbers refer to whatever can be individuated. No individuation, no arithmetic. (It's also Hume v Armstrong on laws on nature).
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Does some mathematics depend entirely on notation? [Brown,JR]
     Full Idea: Are there mathematical properties which can only be discovered using a particular notation?
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 6)
     A reaction: If so, this would seem to be a serious difficulty for platonists. Brown has just been exploring the mathematical theory of knots.
For nomalists there are no numbers, only numerals [Brown,JR]
     Full Idea: For the instinctive nominalist in mathematics, there are no numbers, only numerals.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: Maybe. A numeral is a specific sign, sometimes in a specific natural language, so this seems to miss the fact that cardinality etc are features of reality, not just conventions.
The most brilliant formalist was Hilbert [Brown,JR]
     Full Idea: In mathematics, the most brilliant formalist of all was Hilbert
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: He seems to have developed his fully formalist views later in his career. See Mathematics|Basis of Mathematic|Formalism in our thematic section. Kreisel denies that Hilbert was a true formalist.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
There are no constructions for many highly desirable results in mathematics [Brown,JR]
     Full Idea: Constuctivists link truth with constructive proof, but necessarily lack constructions for many highly desirable results of classical mathematics, making their account of mathematical truth rather implausible.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: The tricky word here is 'desirable', which is an odd criterion for mathematical truth. Nevertheless this sounds like a good objection. How flexible might the concept of a 'construction' be?
Constructivists say p has no value, if the value depends on Goldbach's Conjecture [Brown,JR]
     Full Idea: If we define p as '3 if Goldbach's Conjecture is true' and '5 if Goldbach's Conjecture is false', it seems that p must be a prime number, but, amazingly, constructivists would not accept this without a proof of Goldbach's Conjecture.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 8)
     A reaction: A very similar argument structure to Schrödinger's Cat. This seems (as Brown implies) to be a devastating knock-down argument, but I'll keep an open mind for now.
7. Existence / A. Nature of Existence / 3. Being / c. Becoming
The one was and is and will be and was becoming and is becoming and will become [Plato]
     Full Idea: The one was and is and will be and was becoming and is becoming and will become.
     From: Plato (Parmenides [c.364 BCE], 155d)
7. Existence / A. Nature of Existence / 3. Being / f. Primary being
Plato's Parmenides has a three-part theory, of Primal One, a One-Many, and a One-and-Many [Plato, by Plotinus]
     Full Idea: The Platonic Parmenides is more exact [than Parmenides himself]; the distinction is made between the Primal One, a strictly pure Unity, and a secondary One which is a One-Many, and a third which is a One-and-Many.
     From: report of Plato (Parmenides [c.364 BCE]) by Plotinus - The Enneads 5.1.08
     A reaction: Plotinus approves of this three-part theory. Parmenides has the problem that the highest Being contains no movement. By placing the One outside Being you can give it powers which an existent thing cannot have. Cf the concept of God.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
David's 'Napoleon' is about something concrete and something abstract [Brown,JR]
     Full Idea: David's painting of Napoleon (on a white horse) is a 'picture' of Napoleon, and a 'symbol' of leadership, courage, adventure. It manages to be about something concrete and something abstract.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 3)
     A reaction: This strikes me as the germ of an extremely important idea - that abstraction is involved in our perception of the concrete, so that they are not two entirely separate realms. Seeing 'as' involves abstraction.
7. Existence / D. Theories of Reality / 3. Reality
Absolute ideas, such as the Good and the Beautiful, cannot be known by us [Plato]
     Full Idea: The absolute good and the beautiful and all which we conceive to be absolute ideas are unknown to us.
     From: Plato (Parmenides [c.364 BCE], 134c)
8. Modes of Existence / D. Universals / 2. Need for Universals
If you deny that each thing always stays the same, you destroy the possibility of discussion [Plato]
     Full Idea: If a person denies that the idea of each thing is always the same, he will utterly destroy the power of carrying on discussion.
     From: Plato (Parmenides [c.364 BCE], 135c)
You must always mean the same thing when you utter the same name [Plato]
     Full Idea: You must always mean the same thing when you utter the same name.
     From: Plato (Parmenides [c.364 BCE], 147d)
8. Modes of Existence / D. Universals / 6. Platonic Forms / a. Platonic Forms
It would be absurd to think there were abstract Forms for vile things like hair, mud and dirt [Plato]
     Full Idea: Are there abstract ideas for such things as hair, mud and dirt, which are particularly vile and worthless? That would be quite absurd.
     From: Plato (Parmenides [c.364 BCE], 130d)
The concept of a master includes the concept of a slave [Plato]
     Full Idea: Mastership in the abstract is mastership of slavery in the abstract.
     From: Plato (Parmenides [c.364 BCE], 133e)
If admirable things have Forms, maybe everything else does as well [Plato]
     Full Idea: It is troubling that if admirable things have abstract ideas, then perhaps everything else must have ideas as well.
     From: Plato (Parmenides [c.364 BCE], 130d)
If absolute ideas existed in us, they would cease to be absolute [Plato]
     Full Idea: None of the absolute ideas exists in us, because then it would no longer be absolute.
     From: Plato (Parmenides [c.364 BCE], 133c)
Greatness and smallness must exist, to be opposed to one another, and come into being in things [Plato]
     Full Idea: These two ideas, greatness and smallness, exist, do they not? For if they did not exist, they could not be opposites of one another, and could not come into being in things.
     From: Plato (Parmenides [c.364 BCE], 149e)
Plato moves from Forms to a theory of genera and principles in his later work [Plato, by Frede,M]
     Full Idea: It seems to me that Plato in the later dialogues, beginning with the second half of 'Parmenides', wants to substitute a theory of genera and theory of principles that constitute these genera for the earlier theory of forms.
     From: report of Plato (Parmenides [c.364 BCE]) by Michael Frede - Title, Unity, Authenticity of the 'Categories' V
     A reaction: My theory is that the later Plato came under the influence of the brilliant young Aristotle, and this idea is a symptom of it. The theory of 'principles' sounds like hylomorphism to me.
8. Modes of Existence / D. Universals / 6. Platonic Forms / b. Partaking
The whole idea of each Form must be found in each thing which participates in it [Plato]
     Full Idea: The whole idea of each form (of beauty, justice etc) must be found in each thing which participates in it.
     From: Plato (Parmenides [c.364 BCE], 131a)
Each idea is in all its participants at once, just as daytime is a unity but in many separate places at once [Plato]
     Full Idea: Just as day is in many places at once, but not separated from itself, so each idea might be in all its participants at once.
     From: Plato (Parmenides [c.364 BCE], 131b)
If things are made alike by participating in something, that thing will be the absolute idea [Plato]
     Full Idea: That by participation in which like things are made like, will be the absolute idea, will it not?
     From: Plato (Parmenides [c.364 BCE], 132e)
Participation is not by means of similarity, so we are looking for some other method of participation [Plato]
     Full Idea: Participation is not by means of likeness, so we must seek some other method of participation.
     From: Plato (Parmenides [c.364 BCE], 133a)
If things partake of ideas, this implies either that everything thinks, or that everything actually is thought [Plato]
     Full Idea: If all things partake of ideas, must either everything be made of thoughts and everything thinks, or everything is thought, and so can't think?
     From: Plato (Parmenides [c.364 BCE], 132c)
8. Modes of Existence / D. Universals / 6. Platonic Forms / c. Self-predication
Nothing can be like an absolute idea, because a third idea intervenes to make them alike (leading to a regress) [Plato]
     Full Idea: It is impossible for anything to be like an absolute idea, because a third idea will appear to make them alike, and if that is like anything, it will lead to another idea, and so on.
     From: Plato (Parmenides [c.364 BCE], 133a)
If absolute greatness and great things are seen as the same, another thing appears which makes them seem great [Plato]
     Full Idea: If you regard the absolute great and the many great things in the same way, will not another appear beyond, by which all these must appear to be great?
     From: Plato (Parmenides [c.364 BCE], 132a)
9. Objects / B. Unity of Objects / 1. Unifying an Object / b. Unifying aggregates
Parts must belong to a created thing with a distinct form [Plato]
     Full Idea: The part would not be the part of many things or all, but of some one character ['ideas'] and of some one thing, which we call a 'whole', since it has come to be one complete [perfected] thing composed [created] of all.
     From: Plato (Parmenides [c.364 BCE], 157d)
     A reaction: A serious shot by Plato at what identity is. Harte quotes it (125) and shows that 'character' is Gk 'idea', and 'composed' will translate as 'created'. 'Form' links this Platonic passage to Aristotle's hylomorphism.
9. Objects / C. Structure of Objects / 5. Composition of an Object
In Parmenides, if composition is identity, a whole is nothing more than its parts [Plato, by Harte,V]
     Full Idea: At the heart of the 'Parmenides' puzzles about composition is the thesis that composition is identity. Considered thus, a whole adds nothing to an ontology that already includes its parts
     From: report of Plato (Parmenides [c.364 BCE]) by Verity Harte - Plato on Parts and Wholes 2.5
     A reaction: There has to be more to a unified identity that mere proximity of the parts. When do parts come together, and when do they actually 'compose' something?
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
Plato says only a one has parts, and a many does not [Plato, by Harte,V]
     Full Idea: In 'Parmenides' it is argued that a part cannot be part of a many, but must be part of something one.
     From: report of Plato (Parmenides [c.364 BCE], 157c) by Verity Harte - Plato on Parts and Wholes 3.2
     A reaction: This looks like the right way to go with the term 'part'. We presuppose a unity before we even talk of its parts, so we can't get into contradictions and paradoxes about their relationships.
Anything which has parts must be one thing, and parts are of a one, not of a many [Plato]
     Full Idea: The whole of which the parts are parts must be one thing composed of many; for each of the parts must be part, not of a many, but of a whole.
     From: Plato (Parmenides [c.364 BCE], 157c)
     A reaction: This is a key move of metaphysics, and we should hang on to it. The other way madness lies.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
It seems that the One must be composed of parts, which contradicts its being one [Plato]
     Full Idea: The One must be composed of parts, both being a whole and having parts. So on both grounds the One would thus be many and not one. But it must be not many, but one. So if the One will be one, it will neither be a whole, nor have parts.
     From: Plato (Parmenides [c.364 BCE], 137c09), quoted by Kathrin Koslicki - The Structure of Objects 5.2
     A reaction: This is the starting point for Plato's metaphysical discussion of objects. It seems to begin a line of thought which is completed by Aristotle, surmising that only an essential structure can bestow identity on a bunch of parts.
9. Objects / F. Identity among Objects / 6. Identity between Objects
Two things relate either as same or different, or part of a whole, or the whole of the part [Plato]
     Full Idea: Everything is surely related to everything as follows: either it is the same or different; or, if it is not the same or different, it would be related as part to whole or as whole to part.
     From: Plato (Parmenides [c.364 BCE], 146b)
     A reaction: This strikes me as a really helpful first step in trying to analyse the nature of identity. Two things are either two or (actually) one, or related mereologically.
18. Thought / E. Abstraction / 1. Abstract Thought
'Abstract' nowadays means outside space and time, not concrete, not physical [Brown,JR]
     Full Idea: The current usage of 'abstract' simply means outside space and time, not concrete, not physical.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: This is in contrast to Idea 9609 (the older notion of being abstracted). It seems odd that our ancestors had a theory about where such ideas came from, but modern thinkers have no theory at all. Blame Frege for that.
The older sense of 'abstract' is where 'redness' or 'group' is abstracted from particulars [Brown,JR]
     Full Idea: The older sense of 'abstract' applies to universals, where a universal like 'redness' is abstracted from red particulars; it is the one associated with the many. In mathematics, the notion of 'group' or 'vector space' perhaps fits this pattern.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: I am currently investigating whether this 'older' concept is in fact dead. It seems to me that it is needed, as part of cognitive science, and as the crucial link between a materialist metaphysic and the world of ideas.
19. Language / A. Nature of Meaning / 7. Meaning Holism / c. Meaning by Role
A term can have not only a sense and a reference, but also a 'computational role' [Brown,JR]
     Full Idea: In addition to the sense and reference of term, there is the 'computational' role. The name '2' has a sense (successor of 1) and a reference (the number 2). But the word 'two' has little computational power, Roman 'II' is better, and '2' is a marvel.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 6)
     A reaction: Very interesting, and the point might transfer to natural languages. Synonymous terms carry with them not just different expressive powers, but the capacity to play different roles (e.g. slang and formal terms, gob and mouth).
25. Social Practice / E. Policies / 5. Education / c. Teaching
Only a great person can understand the essence of things, and an even greater person can teach it [Plato]
     Full Idea: Only a man of very great natural gifts will be able to understand that everything has a class and absolute essence, and an even more wonderful man can teach this.
     From: Plato (Parmenides [c.364 BCE], 135a)
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Given atomism at one end, and a finite universe at the other, there are no physical infinities [Brown,JR]
     Full Idea: There seem to be no actual infinites in the physical realm. Given the correctness of atomism, there are no infinitely small things, no infinite divisibility. And General Relativity says that the universe is only finitely large.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: If time was infinite, you could travel round in a circle forever. An atom has size, so it has a left, middle and right to it. Etc. They seem to be physical, so we will count those too.
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / d. The unlimited
The unlimited has no shape and is endless [Plato]
     Full Idea: The unlimited partakes neither of the round nor of the straight, because it has no ends nor edges.
     From: Plato (Parmenides [c.364 BCE], 137e)
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / e. The One
Some things do not partake of the One [Plato]
     Full Idea: The others cannot partake of the one in any way; they can neither partake of it nor of the whole.
     From: Plato (Parmenides [c.364 BCE], 159d)
     A reaction: Compare Idea 231
The only movement possible for the One is in space or in alteration [Plato]
     Full Idea: If the One moves it either moves spatially or it is altered, since these are the only motions.
     From: Plato (Parmenides [c.364 BCE], 138b)
Everything partakes of the One in some way [Plato]
     Full Idea: The others are not altogether deprived of the one, for they partake of it in some way.
     From: Plato (Parmenides [c.364 BCE], 157c)
     A reaction: Compare Idea 233.
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
We couldn't discuss the non-existence of the One without knowledge of it [Plato]
     Full Idea: There must be knowledge of the one, or else not even the meaning of the words 'if the one does not exist' would be known.
     From: Plato (Parmenides [c.364 BCE], 160d)