Combining Texts

All the ideas for 'Parmenides', 'The Limits of Abstraction' and 'Scientific Explanation'

unexpand these ideas     |    start again     |     specify just one area for these texts


48 ideas

2. Reason / A. Nature of Reason / 1. On Reason
When questions are doubtful we should concentrate not on objects but on ideas of the intellect [Plato]
     Full Idea: Doubtful questions should not be discussed in terms of visible objects or in relation to them, but only with reference to ideas conceived by the intellect.
     From: Plato (Parmenides [c.364 BCE], 135e)
2. Reason / B. Laws of Thought / 5. Opposites
Opposites are as unlike as possible [Plato]
     Full Idea: Opposites are as unlike as possible.
     From: Plato (Parmenides [c.364 BCE], 159a)
2. Reason / C. Styles of Reason / 1. Dialectic
Plato's 'Parmenides' is the greatest artistic achievement of the ancient dialectic [Hegel on Plato]
     Full Idea: Plato's 'Parmenides' is the greatest artistic achievement of the ancient dialectic.
     From: comment on Plato (Parmenides [c.364 BCE]) by Georg W.F.Hegel - Phenomenology of Spirit Pref 71
     A reaction: It is a long way from the analytic tradition of philosophy to be singling out a classic text for its 'artistic' achievement. Eventually we may even look back on, say, Kripke's 'Naming and Necessity' and see it in that light.
2. Reason / D. Definition / 3. Types of Definition
Implicit definitions must be satisfiable, creative definitions introduce things, contextual definitions build on things [Fine,K, by Cook/Ebert]
     Full Idea: Fine distinguishes 'implicit definitions', where we must know it is satisfiable before it is deployed, 'creative definitions', where objects are introduced in virtue of the definition, ..and 'contextual definitions', based on established vocabulary.
     From: report of Kit Fine (The Limits of Abstraction [2002], 060) by R Cook / P Ebert - Notice of Fine's 'Limits of Abstraction' 3
     A reaction: Fine is a fan of creative definition. This sounds something like the distinction between cutting nature at the perceived joints, and speculating about where new joints might be inserted. Quite a helpful thought.
'Creative definitions' do not presuppose the existence of the objects defined [Fine,K]
     Full Idea: What I call 'creative definitions' are made from a standpoint in which the existence of the objects that are to be assigned to the terms is not presupposed.
     From: Kit Fine (The Limits of Abstraction [2002], II.1)
2. Reason / F. Fallacies / 4. Circularity
One sort of circularity presupposes a premise, the other presupposes a rule being used [Braithwaite, by Devitt]
     Full Idea: An argument is 'premise-circular' if it aims to establish a conclusion that is assumed as a premise of that very argument. An argument is 'rule-circular' if it aims to establish a conclusion that asserts the goodness of the rule used in that argument.
     From: report of R.B. Braithwaite (Scientific Explanation [1953], p.274-8) by Michael Devitt - There is no a Priori §2
     A reaction: Rule circularity is the sort of thing Quine is always objecting to, but such circularities may be unavoidable, and even totally benign. All the good things in life form a mutually supporting team.
5. Theory of Logic / L. Paradox / 3. Antinomies
Plato found antinomies in ideas, Kant in space and time, and Bradley in relations [Plato, by Ryle]
     Full Idea: Plato (in 'Parmenides') shows that the theory that 'Eide' are substances, and Kant that space and time are substances, and Bradley that relations are substances, all lead to aninomies.
     From: report of Plato (Parmenides [c.364 BCE]) by Gilbert Ryle - Are there propositions? 'Objections'
Plato's 'Parmenides' is perhaps the best collection of antinomies ever made [Russell on Plato]
     Full Idea: Plato's 'Parmenides' is perhaps the best collection of antinomies ever made.
     From: comment on Plato (Parmenides [c.364 BCE]) by Bertrand Russell - The Principles of Mathematics §337
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
One is, so numbers exist, so endless numbers exist, and each one must partake of being [Plato]
     Full Idea: If one is, there must also necessarily be number - Necessarily - But if there is number, there would be many, and an unlimited multitude of beings. ..So if all partakes of being, each part of number would also partake of it.
     From: Plato (Parmenides [c.364 BCE], 144a)
     A reaction: This seems to commit to numbers having being, then to too many numbers, and hence to too much being - but without backing down and wondering whether numbers had being after all. Aristotle disagreed.
7. Existence / A. Nature of Existence / 3. Being / c. Becoming
The one was and is and will be and was becoming and is becoming and will become [Plato]
     Full Idea: The one was and is and will be and was becoming and is becoming and will become.
     From: Plato (Parmenides [c.364 BCE], 155d)
7. Existence / A. Nature of Existence / 3. Being / f. Primary being
Plato's Parmenides has a three-part theory, of Primal One, a One-Many, and a One-and-Many [Plato, by Plotinus]
     Full Idea: The Platonic Parmenides is more exact [than Parmenides himself]; the distinction is made between the Primal One, a strictly pure Unity, and a secondary One which is a One-Many, and a third which is a One-and-Many.
     From: report of Plato (Parmenides [c.364 BCE]) by Plotinus - The Enneads 5.1.08
     A reaction: Plotinus approves of this three-part theory. Parmenides has the problem that the highest Being contains no movement. By placing the One outside Being you can give it powers which an existent thing cannot have. Cf the concept of God.
7. Existence / A. Nature of Existence / 4. Abstract Existence
Abstracts cannot be identified with sets [Fine,K]
     Full Idea: It is impossible for a proponent of both sets and abstracts to identify the abstracts, in any reasonable manner, with the sets.
     From: Kit Fine (The Limits of Abstraction [2002], IV.1)
     A reaction: [This observation emerges from a proof Fine has just completed] Cf Idea 10137. The implication is that there is no compromise view available, and one must choose between abstraction or sets as one's account of numbers and groups of concepts.
Points in Euclidean space are abstract objects, but not introduced by abstraction [Fine,K]
     Full Idea: Points in abstract Euclidean space are abstract objects, and yet are not objects of abstraction, since they are not introduced through a principle of abstraction of the sort envisaged by Frege.
     From: Kit Fine (The Limits of Abstraction [2002], I.1)
     A reaction: The point seems to be that they are not abstracted 'from' anything, but are simpy posited as basic constituents. I suggest that points are idealisations (of smallness) rather than abstractions. They are idealised 'from' substances.
Postulationism says avoid abstract objects by giving procedures that produce truth [Fine,K]
     Full Idea: A procedural form of postulationism says that instead of stipulating that certain statements are true, one specifies certain procedures for extending the domain to one in which the statement will in fact be true, without invoking an abstract ontology.
     From: Kit Fine (The Limits of Abstraction [2002], II.5)
     A reaction: The whole of philosophy might go better if it was founded on procedures and processes, rather than on objects. The Hopi Indians were right.
7. Existence / D. Theories of Reality / 3. Reality
Absolute ideas, such as the Good and the Beautiful, cannot be known by us [Plato]
     Full Idea: The absolute good and the beautiful and all which we conceive to be absolute ideas are unknown to us.
     From: Plato (Parmenides [c.364 BCE], 134c)
8. Modes of Existence / D. Universals / 2. Need for Universals
If you deny that each thing always stays the same, you destroy the possibility of discussion [Plato]
     Full Idea: If a person denies that the idea of each thing is always the same, he will utterly destroy the power of carrying on discussion.
     From: Plato (Parmenides [c.364 BCE], 135c)
You must always mean the same thing when you utter the same name [Plato]
     Full Idea: You must always mean the same thing when you utter the same name.
     From: Plato (Parmenides [c.364 BCE], 147d)
8. Modes of Existence / D. Universals / 6. Platonic Forms / a. Platonic Forms
It would be absurd to think there were abstract Forms for vile things like hair, mud and dirt [Plato]
     Full Idea: Are there abstract ideas for such things as hair, mud and dirt, which are particularly vile and worthless? That would be quite absurd.
     From: Plato (Parmenides [c.364 BCE], 130d)
The concept of a master includes the concept of a slave [Plato]
     Full Idea: Mastership in the abstract is mastership of slavery in the abstract.
     From: Plato (Parmenides [c.364 BCE], 133e)
If admirable things have Forms, maybe everything else does as well [Plato]
     Full Idea: It is troubling that if admirable things have abstract ideas, then perhaps everything else must have ideas as well.
     From: Plato (Parmenides [c.364 BCE], 130d)
If absolute ideas existed in us, they would cease to be absolute [Plato]
     Full Idea: None of the absolute ideas exists in us, because then it would no longer be absolute.
     From: Plato (Parmenides [c.364 BCE], 133c)
Greatness and smallness must exist, to be opposed to one another, and come into being in things [Plato]
     Full Idea: These two ideas, greatness and smallness, exist, do they not? For if they did not exist, they could not be opposites of one another, and could not come into being in things.
     From: Plato (Parmenides [c.364 BCE], 149e)
Plato moves from Forms to a theory of genera and principles in his later work [Plato, by Frede,M]
     Full Idea: It seems to me that Plato in the later dialogues, beginning with the second half of 'Parmenides', wants to substitute a theory of genera and theory of principles that constitute these genera for the earlier theory of forms.
     From: report of Plato (Parmenides [c.364 BCE]) by Michael Frede - Title, Unity, Authenticity of the 'Categories' V
     A reaction: My theory is that the later Plato came under the influence of the brilliant young Aristotle, and this idea is a symptom of it. The theory of 'principles' sounds like hylomorphism to me.
8. Modes of Existence / D. Universals / 6. Platonic Forms / b. Partaking
If things partake of ideas, this implies either that everything thinks, or that everything actually is thought [Plato]
     Full Idea: If all things partake of ideas, must either everything be made of thoughts and everything thinks, or everything is thought, and so can't think?
     From: Plato (Parmenides [c.364 BCE], 132c)
The whole idea of each Form must be found in each thing which participates in it [Plato]
     Full Idea: The whole idea of each form (of beauty, justice etc) must be found in each thing which participates in it.
     From: Plato (Parmenides [c.364 BCE], 131a)
Participation is not by means of similarity, so we are looking for some other method of participation [Plato]
     Full Idea: Participation is not by means of likeness, so we must seek some other method of participation.
     From: Plato (Parmenides [c.364 BCE], 133a)
Each idea is in all its participants at once, just as daytime is a unity but in many separate places at once [Plato]
     Full Idea: Just as day is in many places at once, but not separated from itself, so each idea might be in all its participants at once.
     From: Plato (Parmenides [c.364 BCE], 131b)
If things are made alike by participating in something, that thing will be the absolute idea [Plato]
     Full Idea: That by participation in which like things are made like, will be the absolute idea, will it not?
     From: Plato (Parmenides [c.364 BCE], 132e)
8. Modes of Existence / D. Universals / 6. Platonic Forms / c. Self-predication
Nothing can be like an absolute idea, because a third idea intervenes to make them alike (leading to a regress) [Plato]
     Full Idea: It is impossible for anything to be like an absolute idea, because a third idea will appear to make them alike, and if that is like anything, it will lead to another idea, and so on.
     From: Plato (Parmenides [c.364 BCE], 133a)
If absolute greatness and great things are seen as the same, another thing appears which makes them seem great [Plato]
     Full Idea: If you regard the absolute great and the many great things in the same way, will not another appear beyond, by which all these must appear to be great?
     From: Plato (Parmenides [c.364 BCE], 132a)
9. Objects / B. Unity of Objects / 1. Unifying an Object / b. Unifying aggregates
Parts must belong to a created thing with a distinct form [Plato]
     Full Idea: The part would not be the part of many things or all, but of some one character ['ideas'] and of some one thing, which we call a 'whole', since it has come to be one complete [perfected] thing composed [created] of all.
     From: Plato (Parmenides [c.364 BCE], 157d)
     A reaction: A serious shot by Plato at what identity is. Harte quotes it (125) and shows that 'character' is Gk 'idea', and 'composed' will translate as 'created'. 'Form' links this Platonic passage to Aristotle's hylomorphism.
9. Objects / C. Structure of Objects / 5. Composition of an Object
In Parmenides, if composition is identity, a whole is nothing more than its parts [Plato, by Harte,V]
     Full Idea: At the heart of the 'Parmenides' puzzles about composition is the thesis that composition is identity. Considered thus, a whole adds nothing to an ontology that already includes its parts
     From: report of Plato (Parmenides [c.364 BCE]) by Verity Harte - Plato on Parts and Wholes 2.5
     A reaction: There has to be more to a unified identity that mere proximity of the parts. When do parts come together, and when do they actually 'compose' something?
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
Plato says only a one has parts, and a many does not [Plato, by Harte,V]
     Full Idea: In 'Parmenides' it is argued that a part cannot be part of a many, but must be part of something one.
     From: report of Plato (Parmenides [c.364 BCE], 157c) by Verity Harte - Plato on Parts and Wholes 3.2
     A reaction: This looks like the right way to go with the term 'part'. We presuppose a unity before we even talk of its parts, so we can't get into contradictions and paradoxes about their relationships.
Anything which has parts must be one thing, and parts are of a one, not of a many [Plato]
     Full Idea: The whole of which the parts are parts must be one thing composed of many; for each of the parts must be part, not of a many, but of a whole.
     From: Plato (Parmenides [c.364 BCE], 157c)
     A reaction: This is a key move of metaphysics, and we should hang on to it. The other way madness lies.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
It seems that the One must be composed of parts, which contradicts its being one [Plato]
     Full Idea: The One must be composed of parts, both being a whole and having parts. So on both grounds the One would thus be many and not one. But it must be not many, but one. So if the One will be one, it will neither be a whole, nor have parts.
     From: Plato (Parmenides [c.364 BCE], 137c09), quoted by Kathrin Koslicki - The Structure of Objects 5.2
     A reaction: This is the starting point for Plato's metaphysical discussion of objects. It seems to begin a line of thought which is completed by Aristotle, surmising that only an essential structure can bestow identity on a bunch of parts.
9. Objects / F. Identity among Objects / 6. Identity between Objects
Two things relate either as same or different, or part of a whole, or the whole of the part [Plato]
     Full Idea: Everything is surely related to everything as follows: either it is the same or different; or, if it is not the same or different, it would be related as part to whole or as whole to part.
     From: Plato (Parmenides [c.364 BCE], 146b)
     A reaction: This strikes me as a really helpful first step in trying to analyse the nature of identity. Two things are either two or (actually) one, or related mereologically.
18. Thought / E. Abstraction / 1. Abstract Thought
Fine's 'procedural postulationism' uses creative definitions, but avoids abstract ontology [Fine,K, by Cook/Ebert]
     Full Idea: Fine says creative definitions can found mathematics. His 'procedural postulationism' says one stipulates not truths, but certain procedures for extending a domain. The procedures can be stated without invoking an abstract ontology.
     From: report of Kit Fine (The Limits of Abstraction [2002], 100) by R Cook / P Ebert - Notice of Fine's 'Limits of Abstraction' 4
     A reaction: (For creative definitions, see Idea 9143) This sounds close in spirit to fictionalism, but with the emphasis on the procedure (which can presumably be formalized) rather than a pure act of imaginative creation.
18. Thought / E. Abstraction / 2. Abstracta by Selection
Many different kinds of mathematical objects can be regarded as forms of abstraction [Fine,K]
     Full Idea: Many different kinds of mathematical objects (natural numbers, the reals, points, lines, figures, groups) can be regarded as forms of abstraction, with special theories having their basis in a general theory of abstraction.
     From: Kit Fine (The Limits of Abstraction [2002], I.4)
     A reaction: This result, if persuasive, would be just the sort of unified account which the whole problem of abstact ideas requires.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
We can abstract from concepts (e.g. to number) and from objects (e.g. to direction) [Fine,K]
     Full Idea: A principle of abstraction is 'conceptual' when the items upon which it abstracts are concepts (e.g. a one-one correspondence associated with a number), and 'objectual' if they are objects (parallel lines associated with a direction).
     From: Kit Fine (The Limits of Abstraction [2002], I)
Fine considers abstraction as reconceptualization, to produce new senses by analysing given senses [Fine,K, by Cook/Ebert]
     Full Idea: Fine considers abstraction principles as instances of reconceptualization (rather than implicit definition, or using the Context Principle). This centres not on reference, but on new senses emerging from analysis of a given sense.
     From: report of Kit Fine (The Limits of Abstraction [2002], 035) by R Cook / P Ebert - Notice of Fine's 'Limits of Abstraction' 2
     A reaction: Fine develops an argument against this view, because (roughly) the procedure does not end in a unique result. Intuitively, the idea that abstraction is 'reconceptualization' sounds quite promising to me.
Abstractionism can be regarded as an alternative to set theory [Fine,K]
     Full Idea: The uncompromising abstractionist rejects set theory, seeing the theory of abstractions as an alternative, rather than as a supplement, to the standard theory of sets.
     From: Kit Fine (The Limits of Abstraction [2002], I.1)
     A reaction: There is also a 'compromising' version. Presumably you still have equivalence classes to categorise the objects, which are defined by their origin rather than by what they are members of... Cf. Idea 10145.
An object is the abstract of a concept with respect to a relation on concepts [Fine,K]
     Full Idea: We can see an object as being the abstract of a concept with respect to a relation on concepts. For example, we may say that 0 is the abstract of the empty concept with respect to the relation of one-one correspondence.
     From: Kit Fine (The Limits of Abstraction [2002], I.2)
     A reaction: This is Fine's attempt to give a modified account of the Fregean approach to abstraction. He says that the reference to a relation will solve the problem of identity between abstractions.
25. Social Practice / E. Policies / 5. Education / c. Teaching
Only a great person can understand the essence of things, and an even greater person can teach it [Plato]
     Full Idea: Only a man of very great natural gifts will be able to understand that everything has a class and absolute essence, and an even more wonderful man can teach this.
     From: Plato (Parmenides [c.364 BCE], 135a)
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / d. The unlimited
The unlimited has no shape and is endless [Plato]
     Full Idea: The unlimited partakes neither of the round nor of the straight, because it has no ends nor edges.
     From: Plato (Parmenides [c.364 BCE], 137e)
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / e. The One
Some things do not partake of the One [Plato]
     Full Idea: The others cannot partake of the one in any way; they can neither partake of it nor of the whole.
     From: Plato (Parmenides [c.364 BCE], 159d)
     A reaction: Compare Idea 231
The only movement possible for the One is in space or in alteration [Plato]
     Full Idea: If the One moves it either moves spatially or it is altered, since these are the only motions.
     From: Plato (Parmenides [c.364 BCE], 138b)
Everything partakes of the One in some way [Plato]
     Full Idea: The others are not altogether deprived of the one, for they partake of it in some way.
     From: Plato (Parmenides [c.364 BCE], 157c)
     A reaction: Compare Idea 233.
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
We couldn't discuss the non-existence of the One without knowledge of it [Plato]
     Full Idea: There must be knowledge of the one, or else not even the meaning of the words 'if the one does not exist' would be known.
     From: Plato (Parmenides [c.364 BCE], 160d)