Combining Texts

All the ideas for 'Parmenides', 'What Required for Foundation for Maths?' and 'Quining Qualia'

unexpand these ideas     |    start again     |     specify just one area for these texts


68 ideas

2. Reason / A. Nature of Reason / 1. On Reason
When questions are doubtful we should concentrate not on objects but on ideas of the intellect [Plato]
     Full Idea: Doubtful questions should not be discussed in terms of visible objects or in relation to them, but only with reference to ideas conceived by the intellect.
     From: Plato (Parmenides [c.364 BCE], 135e)
2. Reason / B. Laws of Thought / 5. Opposites
Opposites are as unlike as possible [Plato]
     Full Idea: Opposites are as unlike as possible.
     From: Plato (Parmenides [c.364 BCE], 159a)
2. Reason / C. Styles of Reason / 1. Dialectic
Plato's 'Parmenides' is the greatest artistic achievement of the ancient dialectic [Hegel on Plato]
     Full Idea: Plato's 'Parmenides' is the greatest artistic achievement of the ancient dialectic.
     From: comment on Plato (Parmenides [c.364 BCE]) by Georg W.F.Hegel - Phenomenology of Spirit Pref 71
     A reaction: It is a long way from the analytic tradition of philosophy to be singling out a classic text for its 'artistic' achievement. Eventually we may even look back on, say, Kripke's 'Naming and Necessity' and see it in that light.
2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
     Full Idea: Definition provides us with the means for converting our intuitions into mathematically usable concepts.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
     Full Idea: When you have proved something you know not only that it is true, but why it must be true.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
     A reaction: Note the word 'must'. Presumably both the grounding and the necessitation of the truth are revealed.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
     Full Idea: Set theory cannot be an axiomatic theory, because the very notion of an axiomatic theory makes no sense without it.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: This will come as a surprise to Penelope Maddy, who battles with ways to accept the set theory axioms as the foundation of mathematics. Mayberry says that the basic set theory required is much more simple and intuitive.
There is a semi-categorical axiomatisation of set-theory [Mayberry]
     Full Idea: We can give a semi-categorical axiomatisation of set-theory (all that remains undetermined is the size of the set of urelements and the length of the sequence of ordinals). The system is second-order in formalisation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: I gather this means the models may not be isomorphic to one another (because they differ in size), but can be shown to isomorphic to some third ingredient. I think. Mayberry says this shows there is no such thing as non-Cantorian set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
     Full Idea: The (misnamed!) Axiom of Infinity expresses Cantor's fundamental assumption that the species of natural numbers is finite in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
     Full Idea: The idea of 'generating' sets is only a metaphor - the existence of the hierarchy is established without appealing to such dubious notions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
     A reaction: Presumably there can be a 'dependence' or 'determination' relation which does not involve actual generation.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
     Full Idea: Our very notion of a set is that of an extensional plurality limited in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
     Full Idea: In the mainstream tradition of modern logic, beginning with Boole, Peirce and Schröder, descending through Löwenheim and Skolem to reach maturity with Tarski and his school ...saw logic as a branch of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-1)
     A reaction: [The lesser tradition, of Frege and Russell, says mathematics is a branch of logic]. Mayberry says the Fregean tradition 'has almost died out'.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
     Full Idea: First-order logic is very weak, but therein lies its strength. Its principle tools (Compactness, Completeness, Löwenheim-Skolem Theorems) can be established only because it is too weak to axiomatize either arithmetic or analysis.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.411-2)
     A reaction: He adds the proviso that this is 'unless we are dealing with structures on whose size we have placed an explicit, finite bound' (p.412-1).
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
     Full Idea: Second-order logic is a powerful tool of definition: by means of it alone we can capture mathematical structure up to isomorphism using simple axiom systems.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
     Full Idea: The 'logica magna' [of the Fregean tradition] has quantifiers ranging over a fixed domain, namely everything there is. In the Boolean tradition the domains differ from interpretation to interpretation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-2)
     A reaction: Modal logic displays both approaches, with different systems for global and local domains.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
     Full Idea: No logic which can axiomatize real analysis can have the Löwenheim-Skolem property.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
     Full Idea: The purpose of a 'classificatory' axiomatic theory is to single out an otherwise disparate species of structures by fixing certain features of morphology. ...The aim is to single out common features.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
     Full Idea: The central dogma of the axiomatic method is this: isomorphic structures are mathematically indistinguishable in their essential properties.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
     A reaction: Hence it is not that we have to settle for the success of a system 'up to isomorphism', since that was the original aim. The structures must differ in their non-essential properties, or they would be the same system.
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
     Full Idea: The purpose of what I am calling 'eliminatory' axiomatic theories is precisely to eliminate from mathematics those peculiar ideal and abstract objects that, on the traditional view, constitute its subject matter.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-1)
     A reaction: A very interesting idea. I have a natural antipathy to 'abstract objects', because they really mess up what could otherwise be a very tidy ontology. What he describes might be better called 'ignoring' axioms. The objects may 'exist', but who cares?
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
     Full Idea: No logic which can axiomatise arithmetic can be compact or complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
     A reaction: I take this to be because there are new truths in the transfinite level (as well as the problem of incompleteness).
5. Theory of Logic / L. Paradox / 3. Antinomies
Plato found antinomies in ideas, Kant in space and time, and Bradley in relations [Plato, by Ryle]
     Full Idea: Plato (in 'Parmenides') shows that the theory that 'Eide' are substances, and Kant that space and time are substances, and Bradley that relations are substances, all lead to aninomies.
     From: report of Plato (Parmenides [c.364 BCE]) by Gilbert Ryle - Are there propositions? 'Objections'
Plato's 'Parmenides' is perhaps the best collection of antinomies ever made [Russell on Plato]
     Full Idea: Plato's 'Parmenides' is perhaps the best collection of antinomies ever made.
     From: comment on Plato (Parmenides [c.364 BCE]) by Bertrand Russell - The Principles of Mathematics §337
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
     Full Idea: We eliminate the real numbers by giving an axiomatic definition of the species of complete ordered fields. These axioms are categorical (mutually isomorphic), and thus are mathematically indistinguishable.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: Hence my clever mathematical friend says that it is a terrible misunderstanding to think that mathematics is about numbers. Mayberry says the reals are one ordered field, but mathematics now studies all ordered fields together.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
     Full Idea: Quantities for Greeks were concrete things - lines, surfaces, solids, times, weights. At the centre of their science of quantity was the beautiful theory of ratio and proportion (...in which the notion of number does not appear!).
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
     A reaction: [He credits Eudoxus, and cites Book V of Euclid]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
     Full Idea: The abstract objects of modern mathematics, the real numbers, were invented by the mathematicians of the seventeenth century in order to simplify and to generalize the Greek science of quantity.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
     Full Idea: In Cantor's new vision, the infinite, the genuine infinite, does not disappear, but presents itself in the guise of the absolute, as manifested in the species of all sets or the species of all ordinal numbers.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
     Full Idea: We may describe Cantor's achievement by saying, not that he tamed the infinite, but that he extended the finite.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
     Full Idea: If we grant, as surely we must, the central importance of proof and definition, then we must also grant that mathematics not only needs, but in fact has, foundations.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
     Full Idea: The ultimate principles upon which mathematics rests are those to which mathematicians appeal without proof; and the primitive concepts of mathematics ...themselves are grasped directly, if grasped at all, without the mediation of definition.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
     A reaction: This begs the question of whether the 'grasping' is purely a priori, or whether it derives from experience. I defend the latter, and Jenkins puts the case well.
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
     Full Idea: An account of the foundations of mathematics must specify four things: the primitive concepts for use in definitions, the rules governing definitions, the ultimate premises of proofs, and rules allowing advance from premises to conclusions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
     Full Idea: No axiomatic theory, formal or informal, of first or of higher order can logically play a foundational role in mathematics. ...It is obvious that you cannot use the axiomatic method to explain what the axiomatic method is.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
     Full Idea: The sole theoretical interest of first-order Peano arithmetic derives from the fact that it is a first-order reduct of a categorical second-order theory. Its axioms can be proved incomplete only because the second-order theory is categorical.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
     Full Idea: If we did not know that the second-order axioms characterise the natural numbers up to isomorphism, we should have no reason to suppose, a priori, that first-order Peano Arithmetic should be complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
     Full Idea: The idea that set theory must simply be identified with first-order Zermelo-Fraenkel is surprisingly widespread. ...The first-order axiomatic theory of sets is clearly inadequate as a foundation of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-2)
     A reaction: [He is agreeing with a quotation from Skolem].
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
     Full Idea: One does not have to translate 'ordinary' mathematics into the Zermelo-Fraenkel system: ordinary mathematics comes embodied in that system.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-1)
     A reaction: Mayberry seems to be a particular fan of set theory as spelling out the underlying facts of mathematics, though it has to be second-order.
Set theory is not just another axiomatised part of mathematics [Mayberry]
     Full Idea: The fons et origo of all confusion is the view that set theory is just another axiomatic theory and the universe of sets just another mathematical structure. ...The universe of sets ...is the world that all mathematical structures inhabit.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.416-1)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
One is, so numbers exist, so endless numbers exist, and each one must partake of being [Plato]
     Full Idea: If one is, there must also necessarily be number - Necessarily - But if there is number, there would be many, and an unlimited multitude of beings. ..So if all partakes of being, each part of number would also partake of it.
     From: Plato (Parmenides [c.364 BCE], 144a)
     A reaction: This seems to commit to numbers having being, then to too many numbers, and hence to too much being - but without backing down and wondering whether numbers had being after all. Aristotle disagreed.
7. Existence / A. Nature of Existence / 3. Being / c. Becoming
The one was and is and will be and was becoming and is becoming and will become [Plato]
     Full Idea: The one was and is and will be and was becoming and is becoming and will become.
     From: Plato (Parmenides [c.364 BCE], 155d)
7. Existence / A. Nature of Existence / 3. Being / f. Primary being
Plato's Parmenides has a three-part theory, of Primal One, a One-Many, and a One-and-Many [Plato, by Plotinus]
     Full Idea: The Platonic Parmenides is more exact [than Parmenides himself]; the distinction is made between the Primal One, a strictly pure Unity, and a secondary One which is a One-Many, and a third which is a One-and-Many.
     From: report of Plato (Parmenides [c.364 BCE]) by Plotinus - The Enneads 5.1.08
     A reaction: Plotinus approves of this three-part theory. Parmenides has the problem that the highest Being contains no movement. By placing the One outside Being you can give it powers which an existent thing cannot have. Cf the concept of God.
7. Existence / D. Theories of Reality / 3. Reality
Absolute ideas, such as the Good and the Beautiful, cannot be known by us [Plato]
     Full Idea: The absolute good and the beautiful and all which we conceive to be absolute ideas are unknown to us.
     From: Plato (Parmenides [c.364 BCE], 134c)
8. Modes of Existence / D. Universals / 2. Need for Universals
If you deny that each thing always stays the same, you destroy the possibility of discussion [Plato]
     Full Idea: If a person denies that the idea of each thing is always the same, he will utterly destroy the power of carrying on discussion.
     From: Plato (Parmenides [c.364 BCE], 135c)
You must always mean the same thing when you utter the same name [Plato]
     Full Idea: You must always mean the same thing when you utter the same name.
     From: Plato (Parmenides [c.364 BCE], 147d)
8. Modes of Existence / D. Universals / 6. Platonic Forms / a. Platonic Forms
It would be absurd to think there were abstract Forms for vile things like hair, mud and dirt [Plato]
     Full Idea: Are there abstract ideas for such things as hair, mud and dirt, which are particularly vile and worthless? That would be quite absurd.
     From: Plato (Parmenides [c.364 BCE], 130d)
The concept of a master includes the concept of a slave [Plato]
     Full Idea: Mastership in the abstract is mastership of slavery in the abstract.
     From: Plato (Parmenides [c.364 BCE], 133e)
If admirable things have Forms, maybe everything else does as well [Plato]
     Full Idea: It is troubling that if admirable things have abstract ideas, then perhaps everything else must have ideas as well.
     From: Plato (Parmenides [c.364 BCE], 130d)
If absolute ideas existed in us, they would cease to be absolute [Plato]
     Full Idea: None of the absolute ideas exists in us, because then it would no longer be absolute.
     From: Plato (Parmenides [c.364 BCE], 133c)
Greatness and smallness must exist, to be opposed to one another, and come into being in things [Plato]
     Full Idea: These two ideas, greatness and smallness, exist, do they not? For if they did not exist, they could not be opposites of one another, and could not come into being in things.
     From: Plato (Parmenides [c.364 BCE], 149e)
Plato moves from Forms to a theory of genera and principles in his later work [Plato, by Frede,M]
     Full Idea: It seems to me that Plato in the later dialogues, beginning with the second half of 'Parmenides', wants to substitute a theory of genera and theory of principles that constitute these genera for the earlier theory of forms.
     From: report of Plato (Parmenides [c.364 BCE]) by Michael Frede - Title, Unity, Authenticity of the 'Categories' V
     A reaction: My theory is that the later Plato came under the influence of the brilliant young Aristotle, and this idea is a symptom of it. The theory of 'principles' sounds like hylomorphism to me.
8. Modes of Existence / D. Universals / 6. Platonic Forms / b. Partaking
If things partake of ideas, this implies either that everything thinks, or that everything actually is thought [Plato]
     Full Idea: If all things partake of ideas, must either everything be made of thoughts and everything thinks, or everything is thought, and so can't think?
     From: Plato (Parmenides [c.364 BCE], 132c)
The whole idea of each Form must be found in each thing which participates in it [Plato]
     Full Idea: The whole idea of each form (of beauty, justice etc) must be found in each thing which participates in it.
     From: Plato (Parmenides [c.364 BCE], 131a)
Participation is not by means of similarity, so we are looking for some other method of participation [Plato]
     Full Idea: Participation is not by means of likeness, so we must seek some other method of participation.
     From: Plato (Parmenides [c.364 BCE], 133a)
Each idea is in all its participants at once, just as daytime is a unity but in many separate places at once [Plato]
     Full Idea: Just as day is in many places at once, but not separated from itself, so each idea might be in all its participants at once.
     From: Plato (Parmenides [c.364 BCE], 131b)
If things are made alike by participating in something, that thing will be the absolute idea [Plato]
     Full Idea: That by participation in which like things are made like, will be the absolute idea, will it not?
     From: Plato (Parmenides [c.364 BCE], 132e)
8. Modes of Existence / D. Universals / 6. Platonic Forms / c. Self-predication
Nothing can be like an absolute idea, because a third idea intervenes to make them alike (leading to a regress) [Plato]
     Full Idea: It is impossible for anything to be like an absolute idea, because a third idea will appear to make them alike, and if that is like anything, it will lead to another idea, and so on.
     From: Plato (Parmenides [c.364 BCE], 133a)
If absolute greatness and great things are seen as the same, another thing appears which makes them seem great [Plato]
     Full Idea: If you regard the absolute great and the many great things in the same way, will not another appear beyond, by which all these must appear to be great?
     From: Plato (Parmenides [c.364 BCE], 132a)
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
     Full Idea: The abstractness of the old fashioned real numbers has been replaced by generality in the modern theory of complete ordered fields.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: In philosophy, I'm increasingly thinking that we should talk much more of 'generality', and a great deal less about 'universals'. (By which I don't mean that redness is just the set of red things).
9. Objects / B. Unity of Objects / 1. Unifying an Object / b. Unifying aggregates
Parts must belong to a created thing with a distinct form [Plato]
     Full Idea: The part would not be the part of many things or all, but of some one character ['ideas'] and of some one thing, which we call a 'whole', since it has come to be one complete [perfected] thing composed [created] of all.
     From: Plato (Parmenides [c.364 BCE], 157d)
     A reaction: A serious shot by Plato at what identity is. Harte quotes it (125) and shows that 'character' is Gk 'idea', and 'composed' will translate as 'created'. 'Form' links this Platonic passage to Aristotle's hylomorphism.
9. Objects / C. Structure of Objects / 5. Composition of an Object
In Parmenides, if composition is identity, a whole is nothing more than its parts [Plato, by Harte,V]
     Full Idea: At the heart of the 'Parmenides' puzzles about composition is the thesis that composition is identity. Considered thus, a whole adds nothing to an ontology that already includes its parts
     From: report of Plato (Parmenides [c.364 BCE]) by Verity Harte - Plato on Parts and Wholes 2.5
     A reaction: There has to be more to a unified identity that mere proximity of the parts. When do parts come together, and when do they actually 'compose' something?
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
Plato says only a one has parts, and a many does not [Plato, by Harte,V]
     Full Idea: In 'Parmenides' it is argued that a part cannot be part of a many, but must be part of something one.
     From: report of Plato (Parmenides [c.364 BCE], 157c) by Verity Harte - Plato on Parts and Wholes 3.2
     A reaction: This looks like the right way to go with the term 'part'. We presuppose a unity before we even talk of its parts, so we can't get into contradictions and paradoxes about their relationships.
Anything which has parts must be one thing, and parts are of a one, not of a many [Plato]
     Full Idea: The whole of which the parts are parts must be one thing composed of many; for each of the parts must be part, not of a many, but of a whole.
     From: Plato (Parmenides [c.364 BCE], 157c)
     A reaction: This is a key move of metaphysics, and we should hang on to it. The other way madness lies.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
It seems that the One must be composed of parts, which contradicts its being one [Plato]
     Full Idea: The One must be composed of parts, both being a whole and having parts. So on both grounds the One would thus be many and not one. But it must be not many, but one. So if the One will be one, it will neither be a whole, nor have parts.
     From: Plato (Parmenides [c.364 BCE], 137c09), quoted by Kathrin Koslicki - The Structure of Objects 5.2
     A reaction: This is the starting point for Plato's metaphysical discussion of objects. It seems to begin a line of thought which is completed by Aristotle, surmising that only an essential structure can bestow identity on a bunch of parts.
9. Objects / F. Identity among Objects / 6. Identity between Objects
Two things relate either as same or different, or part of a whole, or the whole of the part [Plato]
     Full Idea: Everything is surely related to everything as follows: either it is the same or different; or, if it is not the same or different, it would be related as part to whole or as whole to part.
     From: Plato (Parmenides [c.364 BCE], 146b)
     A reaction: This strikes me as a really helpful first step in trying to analyse the nature of identity. Two things are either two or (actually) one, or related mereologically.
15. Nature of Minds / B. Features of Minds / 5. Qualia / a. Nature of qualia
Dennett denies the existence of qualia [Dennett, by Lowe]
     Full Idea: Dennett goes to the extreme of denying the existence of qualia altogether.
     From: report of Daniel C. Dennett (Quining Qualia [1988]) by E.J. Lowe - Introduction to the Philosophy of Mind Ch.3
     A reaction: I sympathise with Dennett. Once you know how physically complex and rapid a quale is (about nine billion connections, all firing continuously), the notion that it seems to be some new 'thing', while just being a process, seems fine. Like a waterfall.
25. Social Practice / E. Policies / 5. Education / c. Teaching
Only a great person can understand the essence of things, and an even greater person can teach it [Plato]
     Full Idea: Only a man of very great natural gifts will be able to understand that everything has a class and absolute essence, and an even more wonderful man can teach this.
     From: Plato (Parmenides [c.364 BCE], 135a)
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / d. The unlimited
The unlimited has no shape and is endless [Plato]
     Full Idea: The unlimited partakes neither of the round nor of the straight, because it has no ends nor edges.
     From: Plato (Parmenides [c.364 BCE], 137e)
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / e. The One
Some things do not partake of the One [Plato]
     Full Idea: The others cannot partake of the one in any way; they can neither partake of it nor of the whole.
     From: Plato (Parmenides [c.364 BCE], 159d)
     A reaction: Compare Idea 231
The only movement possible for the One is in space or in alteration [Plato]
     Full Idea: If the One moves it either moves spatially or it is altered, since these are the only motions.
     From: Plato (Parmenides [c.364 BCE], 138b)
Everything partakes of the One in some way [Plato]
     Full Idea: The others are not altogether deprived of the one, for they partake of it in some way.
     From: Plato (Parmenides [c.364 BCE], 157c)
     A reaction: Compare Idea 233.
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
We couldn't discuss the non-existence of the One without knowledge of it [Plato]
     Full Idea: There must be knowledge of the one, or else not even the meaning of the words 'if the one does not exist' would be known.
     From: Plato (Parmenides [c.364 BCE], 160d)