Combining Texts

All the ideas for 'fragments/reports', 'Set Theory' and 'Modal Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


19 ideas

4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
Normal system K has five axioms and rules [Cresswell]
     Full Idea: Normal propositional modal logics derive from the minimal system K: wffs of PC are axioms; □(p⊃q)⊃(□p⊃□q); uniform substitution; modus ponens; necessitation (α→□α).
     From: Max J. Cresswell (Modal Logic [2001], 7.1)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
D is valid on every serial frame, but not where there are dead ends [Cresswell]
     Full Idea: If a frame contains any dead end or blind world, then D is not valid on that frame, ...but D is valid on every serial frame.
     From: Max J. Cresswell (Modal Logic [2001], 7.1.1)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
S4 has 14 modalities, and always reduces to a maximum of three modal operators [Cresswell]
     Full Idea: In S4 there are exactly 14 distinct modalities, and any modality may be reduced to one containing no more than three modal operators in sequence.
     From: Max J. Cresswell (Modal Logic [2001], 7.1.2)
     A reaction: The significance of this may be unclear, but it illustrates one of the rewards of using formal systems to think about modal problems. There is at least an appearance of precision, even if it is only conditional precision.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
In S5 all the long complex modalities reduce to just three, and their negations [Cresswell]
     Full Idea: S5 contains the four main reduction laws, so the first of any pair of operators may be deleted. Hence all but the last modal operator may be deleted. This leaves six modalities: p, ◊p, □p, and their negations.
     From: Max J. Cresswell (Modal Logic [2001], 7.1.2)
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
Reject the Barcan if quantifiers are confined to worlds, and different things exist in other worlds [Cresswell]
     Full Idea: If one wants the quantifiers in each world to range only over the things that exist in that world, and one doesn't believe that the same things exist in every world, one would probably not want the Barcan formula.
     From: Max J. Cresswell (Modal Logic [2001], 7.2.2)
     A reaction: I haven't quite got this, but it sounds to me like I should reject the Barcan formula (but Idea 9449!). I like a metaphysics to rest on the actual world (with modal properties). I assume different things could have existed, but don't.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is 'Euclidean' if aRb and aRc imply bRc [Cresswell]
     Full Idea: A relation is 'Euclidean' if aRb and aRc imply bRc.
     From: Max J. Cresswell (Modal Logic [2001], 7.1.2)
     A reaction: If a thing has a relation to two separate things, then those two things will also have that relation between them. If I am in the same family as Jim and as Jill, then Jim and Jill are in the same family.
10. Modality / A. Necessity / 4. De re / De dicto modality
A de dicto necessity is true in all worlds, but not necessarily of the same thing in each world [Cresswell]
     Full Idea: A de dicto necessary truth says that something is φ, that this proposition is a necessary truth, i.e. that in every accessible world something (but not necessarily the same thing in each world) is φ.
     From: Max J. Cresswell (Modal Logic [2001], 7.2.1)
     A reaction: At last, a really clear and illuminating account of this term! The question is then invited of what is the truthmaker for a de dicto truth, assuming that the objects themselves are truthmakers for de re truths.
21. Aesthetics / C. Artistic Issues / 7. Art and Morality
Musical performance can reveal a range of virtues [Damon of Ath.]
     Full Idea: In singing and playing the lyre, a boy will be likely to reveal not only courage and moderation, but also justice.
     From: Damon (fragments/reports [c.460 BCE], B4), quoted by (who?) - where?