Combining Texts

All the ideas for 'fragments/reports', 'What is Logic?' and 'Philosophy of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


20 ideas

2. Reason / D. Definition / 3. Types of Definition
A decent modern definition should always imply a semantics [Hacking]
     Full Idea: Today we expect that anything worth calling a definition should imply a semantics.
     From: Ian Hacking (What is Logic? [1979], §10)
     A reaction: He compares this with Gentzen 1935, who was attempting purely syntactic definitions of the logical connectives.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Thinning' ('dilution') is the key difference between deduction (which allows it) and induction [Hacking]
     Full Idea: 'Dilution' (or 'Thinning') provides an essential contrast between deductive and inductive reasoning; for the introduction of new premises may spoil an inductive inference.
     From: Ian Hacking (What is Logic? [1979], §06.2)
     A reaction: That is, inductive logic (if there is such a thing) is clearly non-monotonic, whereas classical inductive logic is monotonic.
Gentzen's Cut Rule (or transitivity of deduction) is 'If A |- B and B |- C, then A |- C' [Hacking]
     Full Idea: If A |- B and B |- C, then A |- C. This generalises to: If Γ|-A,Θ and Γ,A |- Θ, then Γ |- Θ. Gentzen called this 'cut'. It is the transitivity of a deduction.
     From: Ian Hacking (What is Logic? [1979], §06.3)
     A reaction: I read the generalisation as 'If A can be either a premise or a conclusion, you can bypass it'. The first version is just transitivity (which by-passes the middle step).
Only Cut reduces complexity, so logic is constructive without it, and it can be dispensed with [Hacking]
     Full Idea: Only the cut rule can have a conclusion that is less complex than its premises. Hence when cut is not used, a derivation is quite literally constructive, building up from components. Any theorem obtained by cut can be obtained without it.
     From: Ian Hacking (What is Logic? [1979], §08)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory says any formula defines a set, and coextensive sets are identical [Linnebo]
     Full Idea: Naïve set theory is based on the principles that any formula defines a set, and that coextensive sets are identical.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 4.2)
     A reaction: The second principle is a standard axiom of ZFC. The first principle causes the trouble.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The various logics are abstractions made from terms like 'if...then' in English [Hacking]
     Full Idea: I don't believe English is by nature classical or intuitionistic etc. These are abstractions made by logicians. Logicians attend to numerous different objects that might be served by 'If...then', like material conditional, strict or relevant implication.
     From: Ian Hacking (What is Logic? [1979], §15)
     A reaction: The idea that they are 'abstractions' is close to my heart. Abstractions from what? Surely 'if...then' has a standard character when employed in normal conversation?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is the strongest complete compact theory with Löwenheim-Skolem [Hacking]
     Full Idea: First-order logic is the strongest complete compact theory with a Löwenheim-Skolem theorem.
     From: Ian Hacking (What is Logic? [1979], §13)
A limitation of first-order logic is that it cannot handle branching quantifiers [Hacking]
     Full Idea: Henkin proved that there is no first-order treatment of branching quantifiers, which do not seem to involve any idea that is fundamentally different from ordinary quantification.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: See Hacking for an example of branching quantifiers. Hacking is impressed by this as a real limitation of the first-order logic which he generally favours.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order completeness seems to need intensional entities and possible worlds [Hacking]
     Full Idea: Second-order logic has no chance of a completeness theorem unless one ventures into intensional entities and possible worlds.
     From: Ian Hacking (What is Logic? [1979], §13)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
With a pure notion of truth and consequence, the meanings of connectives are fixed syntactically [Hacking]
     Full Idea: My doctrine is that the peculiarity of the logical constants resides precisely in that given a certain pure notion of truth and consequence, all the desirable semantic properties of the constants are determined by their syntactic properties.
     From: Ian Hacking (What is Logic? [1979], §09)
     A reaction: He opposes this to Peacocke 1976, who claims that the logical connectives are essentially semantic in character, concerned with the preservation of truth.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Perhaps variables could be dispensed with, by arrows joining places in the scope of quantifiers [Hacking]
     Full Idea: For some purposes the variables of first-order logic can be regarded as prepositions and place-holders that could in principle be dispensed with, say by a system of arrows indicating what places fall in the scope of which quantifier.
     From: Ian Hacking (What is Logic? [1979], §11)
     A reaction: I tend to think of variables as either pronouns, or as definite descriptions, or as temporary names, but not as prepositions. Must address this new idea...
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
In classical semantics singular terms refer, and quantifiers range over domains [Linnebo]
     Full Idea: In classical semantics the function of singular terms is to refer, and that of quantifiers, to range over appropriate domains of entities.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 7.1)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The axioms of group theory are not assertions, but a definition of a structure [Linnebo]
     Full Idea: Considered in isolation, the axioms of group theory are not assertions but comprise an implicit definition of some abstract structure,
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 3.5)
     A reaction: The traditional Euclidean approach is that axioms are plausible assertions with which to start. The present idea sums up the modern approach. In the modern version you can work backwards from a structure to a set of axioms.
To investigate axiomatic theories, mathematics needs its own foundational axioms [Linnebo]
     Full Idea: Mathematics investigates the deductive consequences of axiomatic theories, but it also needs its own foundational axioms in order to provide models for its various axiomatic theories.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 4.1)
     A reaction: This is a problem which faces the deductivist (if-then) approach. The deductive process needs its own grounds.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
You can't prove consistency using a weaker theory, but you can use a consistent theory [Linnebo]
     Full Idea: If the 2nd Incompleteness Theorem undermines Hilbert's attempt to use a weak theory to prove the consistency of a strong one, it is still possible to prove the consistency of one theory, assuming the consistency of another theory.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 4.6)
     A reaction: Note that this concerns consistency, not completeness.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematics is the study of all possible patterns, and is thus bound to describe the world [Linnebo]
     Full Idea: Philosophical structuralism holds that mathematics is the study of abstract structures, or 'patterns'. If mathematics is the study of all possible patterns, then it is inevitable that the world is described by mathematics.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 11.1)
     A reaction: [He cites the physicist John Barrow (2010) for this] For me this is a major idea, because the concept of a pattern gives a link between the natural physical world and the abstract world of mathematics. No platonism is needed.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logical truth is true in all models, so mathematical objects can't be purely logical [Linnebo]
     Full Idea: Modern logic requires that logical truths be true in all models, including ones devoid of any mathematical objects. It follows immediately that the existence of mathematical objects can never be a matter of logic alone.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 2)
     A reaction: Hm. Could there not be a complete set of models for a theory which all included mathematical objects? (I can't answer that).
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Game Formalism has no semantics, and Term Formalism reduces the semantics [Linnebo]
     Full Idea: Game Formalism seeks to banish all semantics from mathematics, and Term Formalism seeks to reduce any such notions to purely syntactic ones.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 3.3)
     A reaction: This approach was stimulated by the need to justify the existence of the imaginary number i. Just say it is a letter!
21. Aesthetics / C. Artistic Issues / 7. Art and Morality
Musical performance can reveal a range of virtues [Damon of Ath.]
     Full Idea: In singing and playing the lyre, a boy will be likely to reveal not only courage and moderation, but also justice.
     From: Damon (fragments/reports [c.460 BCE], B4), quoted by (who?) - where?