Combining Texts

All the ideas for 'fragments/reports', 'The Laws of Thought' and 'fragments/reports'

unexpand these ideas     |    start again     |     specify just one area for these texts


12 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Boole applied normal algebra to logic, aiming at an algebra of thought [Boole, by Devlin]
     Full Idea: Boole proposed to use the entire apparatus of a school algebra class, with operations such as addition and multiplication, methods to solve equations, and the like, to produce an algebra of thought.
     From: report of George Boole (The Laws of Thought [1854]) by Keith Devlin - Goodbye Descartes Ch.3
     A reaction: The Stoics didn’t use any algebraic notation for their study of propositions, so Boole's idea launched full blown propositional logic, and the rest of modern logic followed. Nice one.
Boole's notation can represent syllogisms and propositional arguments, but not both at once [Boole, by Weiner]
     Full Idea: Boole introduced a new symbolic notation in which it was possible to represent both syllogisms and propositional arguments, ...but not both at once.
     From: report of George Boole (The Laws of Thought [1854], Ch.3) by Joan Weiner - Frege
     A reaction: How important is the development of symbolic notations for the advancement of civilisations? Is there a perfect notation, as used in logical heaven?
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Boole made logic more mathematical, with algebra, quantifiers and probability [Boole, by Friend]
     Full Idea: Boole (followed by Frege) began to turn logic from a branch of philosophy into a branch of mathematics. He brought an algebraic approach to propositions, and introduced the notion of a quantifier and a type of probabilistic reasoning.
     From: report of George Boole (The Laws of Thought [1854], 3.2) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: The result was that logic not only became more mathematical, but also more specialised. We now have two types of philosopher, those steeped in mathematical logic and the rest. They don't always sing from the same songsheet.
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Boole's method was axiomatic, achieving economy, plus multiple interpretations [Boole, by Potter]
     Full Idea: Boole's work was an early example of the axiomatic method, whereby intellectual economy is achieved by studying a set of axioms in which the primitive terms have multiple interpretations.
     From: report of George Boole (The Laws of Thought [1854]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 02 'Boole'
     A reaction: Unclear about this. I suppose the axioms are just syntactic, and a range of semantic interpretations can be applied. Are De Morgan's Laws interpretations, or implications of the syntactic axioms? The latter, I think.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / a. Achilles paradox
We don't have time for infinite quantity, but we do for infinite divisibility, because time is also divisible [Aristotle on Zeno of Elea]
     Full Idea: Although it is impossible to make contact in a finite time with things that are infinite in quantity, it is possible to do so with things that are infinitely divisible, since the time itself is also infinite in this way.
     From: comment on Zeno (Elea) (fragments/reports [c.450 BCE], A25) by Aristotle - Physics 233a21
The fast runner must always reach the point from which the slower runner started [Zeno of Elea, by Aristotle]
     Full Idea: Zeno's so-called 'Achilles' claims that the slowest runner will never be caught by the fastest runner, because the one behind has first to reach the point from which the one in front started, and so the slower one is bound always to be in front.
     From: report of Zeno (Elea) (fragments/reports [c.450 BCE]) by Aristotle - Physics 239b14
     A reaction: The point is that the slower runner will always have moved on when the faster runner catches up with the starting point. We must understand how humble the early Greeks felt when they confronted arguments like this. It was like a divine revelation.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / b. The Heap paradox ('Sorites')
Zeno is wrong that one grain of millet makes a sound; why should one grain achieve what the whole bushel does? [Aristotle on Zeno of Elea]
     Full Idea: Zeno is wrong in arguing that the tiniest fragment of millet makes a sound; there is no reason why the fragment should be able to move in any amount of time the air which the whole bushel moved as it fell.
     From: comment on Zeno (Elea) (fragments/reports [c.450 BCE], A29) by Aristotle - Physics 250a16
5. Theory of Logic / L. Paradox / 7. Paradoxes of Time
Zeno's arrow paradox depends on the assumption that time is composed of nows [Aristotle on Zeno of Elea]
     Full Idea: Zeno's third argument claims that a moving arrow is still. Here the conclusion depends on assuming that time is composed of nows; if this assumption is not granted, the argument fails.
     From: comment on Zeno (Elea) (fragments/reports [c.450 BCE], A27?) by Aristotle - Physics 239b5
21. Aesthetics / C. Artistic Issues / 7. Art and Morality
Musical performance can reveal a range of virtues [Damon of Ath.]
     Full Idea: In singing and playing the lyre, a boy will be likely to reveal not only courage and moderation, but also justice.
     From: Damon (fragments/reports [c.460 BCE], B4), quoted by (who?) - where?
26. Natural Theory / A. Speculations on Nature / 1. Nature
If there are many things they must have a finite number, but there must be endless things between them [Zeno of Elea]
     Full Idea: It things are many, they can't be more or less than they are, so they must be finite, but also there must be endless things between each thing, so they must be infinite.
     From: Zeno (Elea) (fragments/reports [c.450 BCE], B3), quoted by Simplicius - On Aristotle's 'Physics' 140.29
27. Natural Reality / A. Classical Physics / 1. Mechanics / a. Explaining movement
That which moves, moves neither in the place in which it is, nor in that in which it is not [Zeno of Elea]
     Full Idea: That which moves, moves neither in the place in which it is, nor in that in which it is not.
     From: Zeno (Elea) (fragments/reports [c.450 BCE], B4), quoted by (who?) - where?
27. Natural Reality / C. Space / 5. Relational Space
If everything is in a place, what is the place in? Place doesn't exist [Zeno of Elea, by Simplicius]
     Full Idea: If there is a place it will be in something, because everything that exists is in something. But what is in something is in a place. Therefore the place will be in a place, and so on ad infinitum. Therefore, there is no such thing as place.
     From: report of Zeno (Elea) (fragments/reports [c.450 BCE], B3) by Simplicius - On Aristotle's 'Physics' 9.562.3