Combining Texts

All the ideas for 'works', 'Intro to 'Self-Representational Consciousness'' and 'Intermediate Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


102 ideas

1. Philosophy / A. Wisdom / 1. Nature of Wisdom
There is practical wisdom (for action), and theoretical wisdom (for deep understanding) [Aristotle, by Whitcomb]
     Full Idea: Aristotle takes wisdom to come in two forms, the practical and the theoretical, the former of which is good judgement about how to act, and the latter of which is deep knowledge or understanding.
     From: report of Aristotle (works [c.330 BCE]) by Dennis Whitcomb - Wisdom Intro
     A reaction: The interesting question is then whether the two are connected. One might be thoroughly 'sensible' about action, without counting as 'wise', which seems to require a broader view of what is being done. Whitcomb endorses Aristotle on this idea.
2. Reason / A. Nature of Reason / 2. Logos
For Aristotle logos is essentially the ability to talk rationally about questions of value [Roochnik on Aristotle]
     Full Idea: For Aristotle logos is the ability to speak rationally about, with the hope of attaining knowledge, questions of value.
     From: comment on Aristotle (works [c.330 BCE]) by David Roochnik - The Tragedy of Reason p.26
2. Reason / A. Nature of Reason / 4. Aims of Reason
Aristotle is the supreme optimist about the ability of logos to explain nature [Roochnik on Aristotle]
     Full Idea: Aristotle is the great theoretician who articulates a vision of a world in which natural and stable structures can be rationally discovered. His is the most optimistic and richest view of the possibilities of logos
     From: comment on Aristotle (works [c.330 BCE]) by David Roochnik - The Tragedy of Reason p.95
2. Reason / D. Definition / 4. Real Definition
Aristotelian definitions aim to give the essential properties of the thing defined [Aristotle, by Quine]
     Full Idea: A real definition, according to the Aristotelian tradition, gives the essence of the kind of thing defined. Man is defined as a rational animal, and thus rationality and animality are of the essence of each of us.
     From: report of Aristotle (works [c.330 BCE]) by Willard Quine - Vagaries of Definition p.51
     A reaction: Compare Idea 4385. Personally I prefer the Aristotelian approach, but we may have to say 'We cannot identify the essence of x, and so x cannot be defined'. Compare 'his mood was hard to define' with 'his mood was hostile'.
2. Reason / D. Definition / 5. Genus and Differentia
Aristotelian definition involves first stating the genus, then the differentia of the thing [Aristotle, by Urmson]
     Full Idea: For Aristotle, to give a definition one must first state the genus and then the differentia of the kind of thing to be defined.
     From: report of Aristotle (works [c.330 BCE]) by J.O. Urmson - Aristotle's Doctrine of the Mean p.157
     A reaction: Presumably a modern definition would just be a list of properties, but Aristotle seeks the substance. How does he define a genus? - by placing it in a further genus?
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Venn Diagrams map three predicates into eight compartments, then look for the conclusion [Bostock]
     Full Idea: Venn Diagrams are a traditional method to test validity of syllogisms. There are three interlocking circles, one for each predicate, thus dividing the universe into eight possible basic elementary quantifications. Is the conclusion in a compartment?
     From: David Bostock (Intermediate Logic [1997], 3.8)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
'Disjunctive Normal Form' is ensuring that no conjunction has a disjunction within its scope [Bostock]
     Full Idea: 'Disjunctive Normal Form' (DNF) is rearranging the occurrences of ∧ and ∨ so that no conjunction sign has any disjunction in its scope. This is achieved by applying two of the distribution laws.
     From: David Bostock (Intermediate Logic [1997], 2.6)
'Conjunctive Normal Form' is ensuring that no disjunction has a conjunction within its scope [Bostock]
     Full Idea: 'Conjunctive Normal Form' (CNF) is rearranging the occurrences of ∧ and ∨ so that no disjunction sign has any conjunction in its scope. This is achieved by applying two of the distribution laws.
     From: David Bostock (Intermediate Logic [1997], 2.6)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Disjunction' says that Γ,φ∨ψ|= iff Γ,φ|= and Γ,ψ|= [Bostock]
     Full Idea: The Principle of Disjunction says that Γ,φ∨ψ |= iff Γ,φ |= and Γ,ψ |=.
     From: David Bostock (Intermediate Logic [1997], 2.5.G)
     A reaction: That is, a disjunction leads to a contradiction if they each separately lead to contradictions.
'Assumptions' says that a formula entails itself (φ|=φ) [Bostock]
     Full Idea: The Principle of Assumptions says that any formula entails itself, i.e. φ |= φ. The principle depends just upon the fact that no interpretation assigns both T and F to the same formula.
     From: David Bostock (Intermediate Logic [1997], 2.5.A)
     A reaction: Thus one can introduce φ |= φ into any proof, and then use it to build more complex sequents needed to attain a particular target formula. Bostock's principle is more general than anything in Lemmon.
'Thinning' allows that if premisses entail a conclusion, then adding further premisses makes no difference [Bostock]
     Full Idea: The Principle of Thinning says that if a set of premisses entails a conclusion, then adding further premisses will still entail the conclusion. It is 'thinning' because it makes a weaker claim. If γ|=φ then γ,ψ|= φ.
     From: David Bostock (Intermediate Logic [1997], 2.5.B)
     A reaction: It is also called 'premise-packing'. It is the characteristic of a 'monotonic' logic - where once something is proved, it stays proved, whatever else is introduced.
The 'conditional' is that Γ|=φ→ψ iff Γ,φ|=ψ [Bostock]
     Full Idea: The Conditional Principle says that Γ |= φ→ψ iff Γ,φ |= ψ. With the addition of negation, this implies φ,φ→ψ |= ψ, which is 'modus ponens'.
     From: David Bostock (Intermediate Logic [1997], 2.5.H)
     A reaction: [Second half is in Ex. 2.5.4]
'Cutting' allows that if x is proved, and adding y then proves z, you can go straight to z [Bostock]
     Full Idea: The Principle of Cutting is the general point that entailment is transitive, extending this to cover entailments with more than one premiss. Thus if γ |= φ and φ,Δ |= ψ then γ,Δ |= ψ. Here φ has been 'cut out'.
     From: David Bostock (Intermediate Logic [1997], 2.5.C)
     A reaction: It might be called the Principle of Shortcutting, since you can get straight to the last conclusion, eliminating the intermediate step.
'Negation' says that Γ,¬φ|= iff Γ|=φ [Bostock]
     Full Idea: The Principle of Negation says that Γ,¬φ |= iff Γ |= φ. We also say that φ,¬φ |=, and hence by 'thinning on the right' that φ,¬φ |= ψ, which is 'ex falso quodlibet'.
     From: David Bostock (Intermediate Logic [1997], 2.5.E)
     A reaction: That is, roughly, if the formula gives consistency, the negation gives contradiction. 'Ex falso' says that anything will follow from a contradiction.
'Conjunction' says that Γ|=φ∧ψ iff Γ|=φ and Γ|=ψ [Bostock]
     Full Idea: The Principle of Conjunction says that Γ |= φ∧ψ iff Γ |= φ and Γ |= ψ. This implies φ,ψ |= φ∧ψ, which is ∧-introduction. It is also implies ∧-elimination.
     From: David Bostock (Intermediate Logic [1997], 2.5.F)
     A reaction: [Second half is Ex. 2.5.3] That is, if they are entailed separately, they are entailed as a unit. It is a moot point whether these principles are theorems of propositional logic, or derivation rules.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
A logic with ¬ and → needs three axiom-schemas and one rule as foundation [Bostock]
     Full Idea: For ¬,→ Schemas: (A1) |-φ→(ψ→φ), (A2) |-(φ→(ψ→ξ)) → ((φ→ψ)→(φ→ξ)), (A3) |-(¬φ→¬ψ) → (ψ→φ), Rule:DET:|-φ,|-φ→ψ then |-ψ
     From: David Bostock (Intermediate Logic [1997], 5.2)
     A reaction: A1 says everything implies a truth, A2 is conditional proof, and A3 is contraposition. DET is modus ponens. This is Bostock's compact near-minimal axiom system for proposition logic. He adds two axioms and another rule for predicate logic.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
A 'free' logic can have empty names, and a 'universally free' logic can have empty domains [Bostock]
     Full Idea: A 'free' logic is one in which names are permitted to be empty. A 'universally free' logic is one in which the domain of an interpretation may also be empty.
     From: David Bostock (Intermediate Logic [1997], 8.6)
4. Formal Logic / G. Formal Mereology / 1. Mereology
Aristotle relativises the notion of wholeness to different measures [Aristotle, by Koslicki]
     Full Idea: Aristotle proposes to relativise unity and plurality, so that a single object can be both one (indivisible) and many (divisible) simultaneously, without contradiction, relative to different measures. Wholeness has degrees, with the strength of the unity.
     From: report of Aristotle (works [c.330 BCE]) by Kathrin Koslicki - The Structure of Objects 7.2.12
     A reaction: [see Koslicki's account of Aristotle for details] As always, the Aristotelian approach looks by far the most promising. Simplistic mechanical accounts of how parts make wholes aren't going to work. We must include the conventional and conceptual bit.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Truth is the basic notion in classical logic [Bostock]
     Full Idea: The most fundamental notion in classical logic is that of truth.
     From: David Bostock (Intermediate Logic [1997], 1.1)
     A reaction: The opening sentence of his book. Hence the first half of the book is about semantics, and only the second half deals with proof. Compare Idea 10282. The thought seems to be that you could leave out truth, but that makes logic pointless.
Elementary logic cannot distinguish clearly between the finite and the infinite [Bostock]
     Full Idea: In very general terms, we cannot express the distinction between what is finite and what is infinite without moving essentially beyond the resources available in elementary logic.
     From: David Bostock (Intermediate Logic [1997], 4.8)
     A reaction: This observation concludes a discussion of Compactness in logic.
Fictional characters wreck elementary logic, as they have contradictions and no excluded middle [Bostock]
     Full Idea: Discourse about fictional characters leads to a breakdown of elementary logic. We accept P or ¬P if the relevant story says so, but P∨¬P will not be true if the relevant story says nothing either way, and P∧¬P is true if the story is inconsistent.
     From: David Bostock (Intermediate Logic [1997], 8.5)
     A reaction: I really like this. Does one need to invent a completely new logic for fictional characters? Or must their logic be intuitionist, or paraconsistent, or both?
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
The syntactic turnstile |- φ means 'there is a proof of φ' or 'φ is a theorem' [Bostock]
     Full Idea: The syntactic turnstile |- φ means 'There is a proof of φ' (in the system currently being considered). Another way of saying the same thing is 'φ is a theorem'.
     From: David Bostock (Intermediate Logic [1997], 5.1)
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Validity is a conclusion following for premises, even if there is no proof [Bostock]
     Full Idea: The classical definition of validity counts an argument as valid if and only if the conclusion does in fact follow from the premises, whether or not the argument contains any demonstration of this fact.
     From: David Bostock (Intermediate Logic [1997], 1.2)
     A reaction: Hence validity is given by |= rather than by |-. A common example is 'it is red so it is coloured', which seems true but beyond proof. In the absence of formal proof, you wonder whether validity is merely a psychological notion.
It seems more natural to express |= as 'therefore', rather than 'entails' [Bostock]
     Full Idea: In practice we avoid quotation marks and explicitly set-theoretic notation that explaining |= as 'entails' appears to demand. Hence it seems more natural to explain |= as simply representing the word 'therefore'.
     From: David Bostock (Intermediate Logic [1997], 1.3)
     A reaction: Not sure I quite understand that, but I have trained myself to say 'therefore' for the generic use of |=. In other consequences it seems better to read it as 'semantic consequence', to distinguish it from |-.
Γ|=φ is 'entails'; Γ|= is 'is inconsistent'; |=φ is 'valid' [Bostock]
     Full Idea: If we write Γ |= φ, with one formula to the right, then the turnstile abbreviates 'entails'. For a sequent of the form Γ |= it can be read as 'is inconsistent'. For |= φ we read it as 'valid'.
     From: David Bostock (Intermediate Logic [1997], 1.3)
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
MPP: 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ' (omit Γs for Detachment) [Bostock]
     Full Idea: The Rule of Detachment is a version of Modus Ponens, and says 'If |=φ and |=φ→ψ then |=ψ'. This has no assumptions. Modus Ponens is the more general rule that 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ'.
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: Modus Ponens is actually designed for use in proof based on assumptions (which isn't always the case). In Detachment the formulae are just valid, without dependence on assumptions to support them.
MPP is a converse of Deduction: If Γ |- φ→ψ then Γ,φ|-ψ [Bostock]
     Full Idea: Modus Ponens is equivalent to the converse of the Deduction Theorem, namely 'If Γ |- φ→ψ then Γ,φ|-ψ'.
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: See 13615 for details of the Deduction Theorem. See 13614 for Modus Ponens.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
The sign '=' is a two-place predicate expressing that 'a is the same thing as b' (a=b) [Bostock]
     Full Idea: We shall use 'a=b' as short for 'a is the same thing as b'. The sign '=' thus expresses a particular two-place predicate. Officially we will use 'I' as the identity predicate, so that 'Iab' is as formula, but we normally 'abbreviate' this to 'a=b'.
     From: David Bostock (Intermediate Logic [1997], 8.1)
|= α=α and α=β |= φ(α/ξ ↔ φ(β/ξ) fix identity [Bostock]
     Full Idea: We usually take these two principles together as the basic principles of identity: |= α=α and α=β |= φ(α/ξ) ↔ φ(β/ξ). The second (with scant regard for history) is known as Leibniz's Law.
     From: David Bostock (Intermediate Logic [1997], 8.1)
If we are to express that there at least two things, we need identity [Bostock]
     Full Idea: To say that there is at least one thing x such that Fx we need only use an existential quantifier, but to say that there are at least two things we need identity as well.
     From: David Bostock (Intermediate Logic [1997], 8.1)
     A reaction: The only clear account I've found of why logic may need to be 'with identity'. Without it, you can only reason about one thing or all things. Presumably plural quantification no longer requires '='?
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
For Aristotle, the subject-predicate structure of Greek reflected a substance-accident structure of reality [Aristotle, by O'Grady]
     Full Idea: Aristotle apparently believed that the subject-predicate structure of Greek reflected the substance-accident nature of reality.
     From: report of Aristotle (works [c.330 BCE]) by Paul O'Grady - Relativism Ch.4
     A reaction: We need not assume that Aristotle is wrong. It is a chicken-and-egg. There is something obvious about subject-predicate language, if one assumes that unified objects are part of nature, and not just conventional.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Truth-functors are usually held to be defined by their truth-tables [Bostock]
     Full Idea: The usual view of the meaning of truth-functors is that each is defined by its own truth-table, independently of any other truth-functor.
     From: David Bostock (Intermediate Logic [1997], 2.7)
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'zero-place' function just has a single value, so it is a name [Bostock]
     Full Idea: We can talk of a 'zero-place' function, which is a new-fangled name for a familiar item; it just has a single value, and so it has the same role as a name.
     From: David Bostock (Intermediate Logic [1997], 8.2)
A 'total' function ranges over the whole domain, a 'partial' function over appropriate inputs [Bostock]
     Full Idea: Usually we allow that a function is defined for arguments of a suitable kind (a 'partial' function), but we can say that each function has one value for any object whatever, from the whole domain that our quantifiers range over (a 'total' function).
     From: David Bostock (Intermediate Logic [1997], 8.2)
     A reaction: He points out (p.338) that 'the father of..' is a functional expression, but it wouldn't normally take stones as input, so seems to be a partial function. But then it doesn't even take all male humans either. It only takes fathers!
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
In logic, a name is just any expression which refers to a particular single object [Bostock]
     Full Idea: The important thing about a name, for logical purposes, is that it is used to make a singular reference to a particular object; ..we say that any expression too may be counted as a name, for our purposes, it it too performs the same job.
     From: David Bostock (Intermediate Logic [1997], 3.1)
     A reaction: He cites definite descriptions as the most notoriously difficult case, in deciding whether or not they function as names. I takes it as pretty obvious that sometimes they do and sometimes they don't (in ordinary usage).
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
An expression is only a name if it succeeds in referring to a real object [Bostock]
     Full Idea: An expression is not counted as a name unless it succeeds in referring to an object, i.e. unless there really is an object to which it refers.
     From: David Bostock (Intermediate Logic [1997], 3.1)
     A reaction: His 'i.e.' makes the existence condition sound sufficient, but in ordinary language you don't succeed in referring to 'that man over there' just because he exists. In modal contexts we presumably refer to hypothetical objects (pace Lewis).
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite descriptions don't always pick out one thing, as in denials of existence, or errors [Bostock]
     Full Idea: It is natural to suppose one only uses a definite description when one believes it describes only one thing, but exceptions are 'there is no such thing as the greatest prime number', or saying something false where the reference doesn't occur.
     From: David Bostock (Intermediate Logic [1997], 8.3)
Definite desciptions resemble names, but can't actually be names, if they don't always refer [Bostock]
     Full Idea: Although a definite description looks like a complex name, and in many ways behaves like a name, still it cannot be a name if names must always refer to objects. Russell gave the first proposal for handling such expressions.
     From: David Bostock (Intermediate Logic [1997], 8.3)
     A reaction: I take the simple solution to be a pragmatic one, as roughly shown by Donnellan, that sometimes they are used exactly like names, and sometimes as something else. The same phrase can have both roles. Confusing for logicians. Tough.
Because of scope problems, definite descriptions are best treated as quantifiers [Bostock]
     Full Idea: Because of the scope problem, it now seems better to 'parse' definition descriptions not as names but as quantifiers. 'The' is to be treated in the same category as acknowledged quantifiers like 'all' and 'some'. We write Ix - 'for the x such that..'.
     From: David Bostock (Intermediate Logic [1997], 8.3)
     A reaction: This seems intuitively rather good, since quantification in normal speech is much more sophisticated than the crude quantification of classical logic. But the fact is that they often function as names (but see Idea 13817).
Definite descriptions are usually treated like names, and are just like them if they uniquely refer [Bostock]
     Full Idea: In practice, definite descriptions are for the most part treated as names, since this is by far the most convenient notation (even though they have scope). ..When a description is uniquely satisfied then it does behave like a name.
     From: David Bostock (Intermediate Logic [1997], 8.3)
     A reaction: Apparent names themselves have problems when they wander away from uniquely picking out one thing, as in 'John Doe'.
We are only obliged to treat definite descriptions as non-names if only the former have scope [Bostock]
     Full Idea: If it is really true that definite descriptions have scopes whereas names do not, then Russell must be right to claim that definite descriptions are not names. If, however, this is not true, then it does no harm to treat descriptions as complex names.
     From: David Bostock (Intermediate Logic [1997], 8.8)
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Names do not have scope problems (e.g. in placing negation), but Russell's account does have that problem [Bostock]
     Full Idea: In orthodox logic names are not regarded as having scope (for example, in where a negation is placed), whereas on Russell's theory definite descriptions certainly do. Russell had his own way of dealing with this.
     From: David Bostock (Intermediate Logic [1997], 8.3)
5. Theory of Logic / G. Quantification / 1. Quantification
'Prenex normal form' is all quantifiers at the beginning, out of the scope of truth-functors [Bostock]
     Full Idea: A formula is said to be in 'prenex normal form' (PNF) iff all its quantifiers occur in a block at the beginning, so that no quantifier is in the scope of any truth-functor.
     From: David Bostock (Intermediate Logic [1997], 3.7)
     A reaction: Bostock provides six equivalences which can be applied to manouevre any formula into prenex normal form. He proves that every formula can be arranged in PNF.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
If we allow empty domains, we must allow empty names [Bostock]
     Full Idea: We can show that if empty domains are permitted, then empty names must be permitted too.
     From: David Bostock (Intermediate Logic [1997], 8.4)
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
An 'informal proof' is in no particular system, and uses obvious steps and some ordinary English [Bostock]
     Full Idea: An 'informal proof' is not in any particular proof system. One may use any rule of proof that is 'sufficiently obvious', and there is quite a lot of ordinary English in the proof, explaining what is going on at each step.
     From: David Bostock (Intermediate Logic [1997], 8.1)
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Quantification adds two axiom-schemas and a new rule [Bostock]
     Full Idea: New axiom-schemas for quantifiers: (A4) |-∀ξφ → φ(α/ξ), (A5) |-∀ξ(ψ→φ) → (ψ→∀ξφ), plus the rule GEN: If |-φ the |-∀ξφ(ξ/α).
     From: David Bostock (Intermediate Logic [1997], 5.6)
     A reaction: This follows on from Idea 13610, where he laid out his three axioms and one rule for propositional (truth-functional) logic. This Idea plus 13610 make Bostock's proposed axiomatisation of first-order logic.
Axiom systems from Frege, Russell, Church, Lukasiewicz, Tarski, Nicod, Kleene, Quine... [Bostock]
     Full Idea: Notably axiomatisations of first-order logic are by Frege (1879), Russell and Whitehead (1910), Church (1956), Lukasiewicz and Tarski (1930), Lukasiewicz (1936), Nicod (1917), Kleene (1952) and Quine (1951). Also Bostock (1997).
     From: David Bostock (Intermediate Logic [1997], 5.8)
     A reaction: My summary, from Bostock's appendix 5.8, which gives details of all of these nine systems. This nicely illustrates the status and nature of axiom systems, which have lost the absolute status they seemed to have in Euclid.
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
'Conditonalised' inferences point to the Deduction Theorem: If Γ,φ|-ψ then Γ|-φ→ψ [Bostock]
     Full Idea: If a group of formulae prove a conclusion, we can 'conditionalize' this into a chain of separate inferences, which leads to the Deduction Theorem (or Conditional Proof), that 'If Γ,φ|-ψ then Γ|-φ→ψ'.
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: This is the rule CP (Conditional Proof) which can be found in the rules for propositional logic I transcribed from Lemmon's book.
The Deduction Theorem greatly simplifies the search for proof [Bostock]
     Full Idea: Use of the Deduction Theorem greatly simplifies the search for proof (or more strictly, the task of showing that there is a proof).
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: See 13615 for details of the Deduction Theorem. Bostock is referring to axiomatic proof, where it can be quite hard to decide which axioms are relevant. The Deduction Theorem enables the making of assumptions.
Proof by Assumptions can always be reduced to Proof by Axioms, using the Deduction Theorem [Bostock]
     Full Idea: By repeated transformations using the Deduction Theorem, any proof from assumptions can be transformed into a fully conditionalized proof, which is then an axiomatic proof.
     From: David Bostock (Intermediate Logic [1997], 5.6)
     A reaction: Since proof using assumptions is perhaps the most standard proof system (e.g. used in Lemmon, for many years the standard book at Oxford University), the Deduction Theorem is crucial for giving it solid foundations.
The Deduction Theorem and Reductio can 'discharge' assumptions - they aren't needed for the new truth [Bostock]
     Full Idea: Like the Deduction Theorem, one form of Reductio ad Absurdum (If Γ,φ|-[absurdity] then Γ|-¬φ) 'discharges' an assumption. Assume φ and obtain a contradiction, then we know ¬&phi, without assuming φ.
     From: David Bostock (Intermediate Logic [1997], 5.7)
     A reaction: Thus proofs from assumption either arrive at conditional truths, or at truths that are true irrespective of what was initially assumed.
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Natural deduction takes proof from assumptions (with its rules) as basic, and axioms play no part [Bostock]
     Full Idea: Natural deduction takes the notion of proof from assumptions as a basic notion, ...so it will use rules for use in proofs from assumptions, and axioms (as traditionally understood) will have no role to play.
     From: David Bostock (Intermediate Logic [1997], 6.1)
     A reaction: The main rules are those for introduction and elimination of truth functors.
Excluded middle is an introduction rule for negation, and ex falso quodlibet will eliminate it [Bostock]
     Full Idea: Many books take RAA (reductio) and DNE (double neg) as the natural deduction introduction- and elimination-rules for negation, but RAA is not a natural introduction rule. I prefer TND (tertium) and EFQ (ex falso) for ¬-introduction and -elimination.
     From: David Bostock (Intermediate Logic [1997], 6.2)
In natural deduction we work from the premisses and the conclusion, hoping to meet in the middle [Bostock]
     Full Idea: When looking for a proof of a sequent, the best we can do in natural deduction is to work simultaneously in both directions, forward from the premisses, and back from the conclusion, and hope they will meet in the middle.
     From: David Bostock (Intermediate Logic [1997], 6.5)
Natural deduction rules for → are the Deduction Theorem (→I) and Modus Ponens (→E) [Bostock]
     Full Idea: Natural deduction adopts for → as rules the Deduction Theorem and Modus Ponens, here called →I and →E. If ψ follows φ in the proof, we can write φ→ψ (→I). φ and φ→ψ permit ψ (→E).
     From: David Bostock (Intermediate Logic [1997], 6.2)
     A reaction: Natural deduction has this neat and appealing way of formally introducing or eliminating each connective, so that you know where you are, and you know what each one means.
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
Tableau proofs use reduction - seeking an impossible consequence from an assumption [Bostock]
     Full Idea: A tableau proof is a proof by reduction ad absurdum. One begins with an assumption, and one develops the consequences of that assumption, seeking to derive an impossible consequence.
     From: David Bostock (Intermediate Logic [1997], 4.1)
A completed open branch gives an interpretation which verifies those formulae [Bostock]
     Full Idea: An open branch in a completed tableau will always yield an interpretation that verifies every formula on the branch.
     From: David Bostock (Intermediate Logic [1997], 4.7)
     A reaction: In other words the open branch shows a model which seems to work (on the available information). Similarly a closed branch gives a model which won't work - a counterexample.
Non-branching rules add lines, and branching rules need a split; a branch with a contradiction is 'closed' [Bostock]
     Full Idea: Rules for semantic tableaus are of two kinds - non-branching rules and branching rules. The first allow the addition of further lines, and the second requires splitting the branch. A branch which assigns contradictory values to a formula is 'closed'.
     From: David Bostock (Intermediate Logic [1997], 4.1)
     A reaction: [compressed] Thus 'and' stays on one branch, asserting both formulae, but 'or' splits, checking first one and then the other. A proof succeeds when all the branches are closed, showing that the initial assumption leads only to contradictions.
In a tableau proof no sequence is established until the final branch is closed; hypotheses are explored [Bostock]
     Full Idea: In a tableau system no sequent is established until the final step of the proof, when the last branch closes, and until then we are simply exploring a hypothesis.
     From: David Bostock (Intermediate Logic [1997], 7.3)
     A reaction: This compares sharply with a sequence calculus, where every single step is a conclusive proof of something. So use tableaux for exploring proofs, and then sequence calculi for writing them up?
A tree proof becomes too broad if its only rule is Modus Ponens [Bostock]
     Full Idea: When the only rule of inference is Modus Ponens, the branches of a tree proof soon spread too wide for comfort.
     From: David Bostock (Intermediate Logic [1997], 6.4)
Tableau rules are all elimination rules, gradually shortening formulae [Bostock]
     Full Idea: In their original setting, all the tableau rules are elimination rules, allowing us to replace a longer formula by its shorter components.
     From: David Bostock (Intermediate Logic [1997], 7.3)
Unlike natural deduction, semantic tableaux have recipes for proving things [Bostock]
     Full Idea: With semantic tableaux there are recipes for proof-construction that we can operate, whereas with natural deduction there are not.
     From: David Bostock (Intermediate Logic [1997], 6.5)
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
A sequent calculus is good for comparing proof systems [Bostock]
     Full Idea: A sequent calculus is a useful tool for comparing two systems that at first look utterly different (such as natural deduction and semantic tableaux).
     From: David Bostock (Intermediate Logic [1997], 7.2)
Each line of a sequent calculus is a conclusion of previous lines, each one explicitly recorded [Bostock]
     Full Idea: A sequent calculus keeps an explicit record of just what sequent is established at each point in a proof. Every line is itself the sequent proved at that point. It is not a linear sequence or array of formulae, but a matching array of whole sequents.
     From: David Bostock (Intermediate Logic [1997], 7.1)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Interpretation by assigning objects to names, or assigning them to variables first [Bostock, by PG]
     Full Idea: There are two approaches to an 'interpretation' of a logic: the first method assigns objects to names, and then defines connectives and quantifiers, focusing on truth; the second assigns objects to variables, then variables to names, using satisfaction.
     From: report of David Bostock (Intermediate Logic [1997], 3.4) by PG - Db (lexicon)
     A reaction: [a summary of nine elusive pages in Bostock] He says he prefers the first method, but the second method is more popular because it handles open formulas, by treating free variables as if they were names.
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionality is built into ordinary logic semantics; names have objects, predicates have sets of objects [Bostock]
     Full Idea: Extensionality is built into the semantics of ordinary logic. When a name-letter is interpreted as denoting something, we just provide the object denoted. All that we provide for a one-place predicate-letter is the set of objects that it is true of..
     From: David Bostock (Intermediate Logic [1997])
     A reaction: Could we keep the syntax of ordinary logic, and provide a wildly different semantics, much closer to real life? We could give up these dreadful 'objects' that Frege lumbered us with. Logic for processes, etc.
If an object has two names, truth is undisturbed if the names are swapped; this is Extensionality [Bostock]
     Full Idea: If two names refer to the same object, then in any proposition which contains either of them the other may be substituted in its place, and the truth-value of the proposition of the proposition will be unaltered. This is the Principle of Extensionality.
     From: David Bostock (Intermediate Logic [1997], 3.1)
     A reaction: He acknowledges that ordinary language is full of counterexamples, such as 'he doesn't know the Morning Star and the Evening Star are the same body' (when he presumably knows that the Morning Star is the Morning Star). This is logic. Like maths.
5. Theory of Logic / K. Features of Logics / 2. Consistency
For 'negation-consistent', there is never |-(S)φ and |-(S)¬φ [Bostock]
     Full Idea: Any system of proof S is said to be 'negation-consistent' iff there is no formula such that |-(S)φ and |-(S)¬φ.
     From: David Bostock (Intermediate Logic [1997], 4.5)
     A reaction: Compare Idea 13542. This version seems to be a 'strong' version, as it demands a higher standard than 'absolute consistency'. Both halves of the condition would have to be established.
A proof-system is 'absolutely consistent' iff we don't have |-(S)φ for every formula [Bostock]
     Full Idea: Any system of proof S is said to be 'absolutely consistent' iff it is not the case that for every formula we have |-(S)φ.
     From: David Bostock (Intermediate Logic [1997], 4.5)
     A reaction: Bostock notes that a sound system will be both 'negation-consistent' (Idea 13541) and absolutely consistent. 'Tonk' systems can be shown to be unsound because the two come apart.
A set of formulae is 'inconsistent' when there is no interpretation which can make them all true [Bostock]
     Full Idea: 'Γ |=' means 'Γ is a set of closed formulae, and there is no (standard) interpretation in which all of the formulae in Γ are true'. We abbreviate this last to 'Γ is inconsistent'.
     From: David Bostock (Intermediate Logic [1997], 4.5)
     A reaction: This is a semantic approach to inconsistency, in terms of truth, as opposed to saying that we cannot prove both p and ¬p. I take this to be closer to the true concept, since you need never have heard of 'proof' to understand 'inconsistent'.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Inconsistency or entailment just from functors and quantifiers is finitely based, if compact [Bostock]
     Full Idea: Being 'compact' means that if we have an inconsistency or an entailment which holds just because of the truth-functors and quantifiers involved, then it is always due to a finite number of the propositions in question.
     From: David Bostock (Intermediate Logic [1997], 4.8)
     A reaction: Bostock says this is surprising, given the examples 'a is not a parent of a parent of b...' etc, where an infinity seems to establish 'a is not an ancestor of b'. The point, though, is that this truth doesn't just depend on truth-functors and quantifiers.
Compactness means an infinity of sequents on the left will add nothing new [Bostock]
     Full Idea: The logic of truth-functions is compact, which means that sequents with infinitely many formulae on the left introduce nothing new. Hence we can confine our attention to finite sequents.
     From: David Bostock (Intermediate Logic [1997], 5.5)
     A reaction: This makes it clear why compactness is a limitation in logic. If you want the logic to be unlimited in scope, it isn't; it only proves things from finite numbers of sequents. This makes it easier to prove completeness for the system.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Ordinary or mathematical induction assumes for the first, then always for the next, and hence for all [Bostock]
     Full Idea: The principle of mathematical (or ordinary) induction says suppose the first number, 0, has a property; suppose that if any number has that property, then so does the next; then it follows that all numbers have the property.
     From: David Bostock (Intermediate Logic [1997], 2.8)
     A reaction: Ordinary induction is also known as 'weak' induction. Compare Idea 13359 for 'strong' or complete induction. The number sequence must have a first element, so this doesn't work for the integers.
Complete induction assumes for all numbers less than n, then also for n, and hence for all numbers [Bostock]
     Full Idea: The principle of complete induction says suppose that for every number, if all the numbers less than it have a property, then so does it; it then follows that every number has the property.
     From: David Bostock (Intermediate Logic [1997], 2.8)
     A reaction: Complete induction is also known as 'strong' induction. Compare Idea 13358 for 'weak' or mathematical induction. The number sequence need have no first element.
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is not reflexive, just because it is transitive and symmetrical [Bostock]
     Full Idea: It is easy to fall into the error of supposing that a relation which is both transitive and symmetrical must also be reflexive.
     From: David Bostock (Intermediate Logic [1997], 4.7)
     A reaction: Compare Idea 14430! Transivity will take you there, and symmetricality will get you back, but that doesn't entitle you to take the shortcut?
Relations can be one-many (at most one on the left) or many-one (at most one on the right) [Bostock]
     Full Idea: A relation is 'one-many' if for anything on the right there is at most one on the left (∀xyz(Rxz∧Ryz→x=y), and is 'many-one' if for anything on the left there is at most one on the right (∀xyz(Rzx∧Rzy→x=y).
     From: David Bostock (Intermediate Logic [1997], 8.1)
9. Objects / C. Structure of Objects / 2. Hylomorphism / a. Hylomorphism
The unmoved mover and the soul show Aristotelian form as the ultimate mereological atom [Aristotle, by Koslicki]
     Full Idea: Aristotle's discussion of the unmoved mover and of the soul confirms the suspicion that form, when it is not thought of as the object represented in a definition, plays the role of the ultimate mereological atom within his system.
     From: report of Aristotle (works [c.330 BCE]) by Kathrin Koslicki - The Structure of Objects 6.6
     A reaction: Aristotle is concerned with which things are 'divisible', and he cites these two examples as indivisible, but they may be too unusual to offer an actual theory of how Aristotle builds up wholes from atoms. He denies atoms in matter.
9. Objects / C. Structure of Objects / 2. Hylomorphism / d. Form as unifier
The 'form' is the recipe for building wholes of a particular kind [Aristotle, by Koslicki]
     Full Idea: Thus in Aristotle we may think of an object's formal components as a sort of recipe for how to build wholes of that particular kind.
     From: report of Aristotle (works [c.330 BCE]) by Kathrin Koslicki - The Structure of Objects 7.2.5
     A reaction: In the elusive business of pinning down what Aristotle means by the crucial idea of 'form', this analogy strikes me as being quite illuminating. It would fit DNA in living things, and the design of an artifact.
9. Objects / F. Identity among Objects / 5. Self-Identity
If non-existent things are self-identical, they are just one thing - so call it the 'null object' [Bostock]
     Full Idea: If even non-existent things are still counted as self-identical, then all non-existent things must be counted as identical with one another, so there is at most one non-existent thing. We might arbitrarily choose zero, or invent 'the null object'.
     From: David Bostock (Intermediate Logic [1997], 8.6)
10. Modality / A. Necessity / 6. Logical Necessity
The idea that anything which can be proved is necessary has a problem with empty names [Bostock]
     Full Idea: The common Rule of Necessitation says that what can be proved is necessary, but this is incorrect if we do not permit empty names. The most straightforward answer is to modify elementary logic so that only necessary truths can be proved.
     From: David Bostock (Intermediate Logic [1997], 8.4)
11. Knowledge Aims / A. Knowledge / 1. Knowledge
For Aristotle, knowledge is of causes, and is theoretical, practical or productive [Aristotle, by Code]
     Full Idea: Aristotle thinks that in general we have knowledge or understanding when we grasp causes, and he distinguishes three fundamental types of knowledge - theoretical, practical and productive.
     From: report of Aristotle (works [c.330 BCE]) by Alan D. Code - Aristotle
     A reaction: Productive knowledge we tend to label as 'knowing how'. The centrality of causes for knowledge would get Aristotle nowadays labelled as a 'naturalist'. It is hard to disagree with his three types, though they may overlap.
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
The notion of a priori truth is absent in Aristotle [Aristotle, by Politis]
     Full Idea: The notion of a priori truth is conspicuously absent in Aristotle.
     From: report of Aristotle (works [c.330 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 1.5
     A reaction: Cf. Idea 11240.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Aristotle is a rationalist, but reason is slowly acquired through perception and experience [Aristotle, by Frede,M]
     Full Idea: Aristotle is a rationalist …but reason for him is a disposition which we only acquire over time. Its acquisition is made possible primarily by perception and experience.
     From: report of Aristotle (works [c.330 BCE]) by Michael Frede - Aristotle's Rationalism p.173
     A reaction: I would describe this process as the gradual acquisition of the skill of objectivity, which needs the right knowledge and concepts to evaluate new experiences.
12. Knowledge Sources / E. Direct Knowledge / 2. Intuition
Aristotle wants to fit common intuitions, and therefore uses language as a guide [Aristotle, by Gill,ML]
     Full Idea: Since Aristotle generally prefers a metaphysical theory that accords with common intuitions, he frequently relies on facts about language to guide his metaphysical claims.
     From: report of Aristotle (works [c.330 BCE]) by Mary Louise Gill - Aristotle on Substance Ch.5
     A reaction: I approve of his procedure. I take intuition to be largely rational justifications too complex for us to enunciate fully, and language embodies folk intuitions in its concepts (especially if the concepts occur in many languages).
14. Science / B. Scientific Theories / 1. Scientific Theory
Plato says sciences are unified around Forms; Aristotle says they're unified around substance [Aristotle, by Moravcsik]
     Full Idea: Plato's unity of science principle states that all - legitimate - sciences are ultimately about the Forms. Aristotle's principle states that all sciences must be, ultimately, about substances, or aspects of substances.
     From: report of Aristotle (works [c.330 BCE], 1) by Julius Moravcsik - Aristotle on Adequate Explanations 1
14. Science / D. Explanation / 1. Explanation / a. Explanation
Aristotelian explanations are facts, while modern explanations depend on human conceptions [Aristotle, by Politis]
     Full Idea: For Aristotle things which explain (the explanantia) are facts, which should not be associated with the modern view that says explanations are dependent on how we conceive and describe the world (where causes are independent of us).
     From: report of Aristotle (works [c.330 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 2.1
     A reaction: There must be some room in modern thought for the Aristotelian view, if some sort of robust scientific realism is being maintained against the highly linguistic view of philosophy found in the twentieth century.
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
Aristotle's standard analysis of species and genus involves specifying things in terms of something more general [Aristotle, by Benardete,JA]
     Full Idea: The standard Aristotelian doctrine of species and genus in the theory of anything whatever involves specifying what the thing is in terms of something more general.
     From: report of Aristotle (works [c.330 BCE]) by José A. Benardete - Metaphysics: the logical approach Ch.10
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
Aristotle regularly says that essential properties explain other significant properties [Aristotle, by Kung]
     Full Idea: The view that essential properties are those in virtue of which other significant properties of the subjects under investigation can be explained is encountered repeatedly in Aristotle's work.
     From: report of Aristotle (works [c.330 BCE]) by Joan Kung - Aristotle on Essence and Explanation IV
     A reaction: What does 'significant' mean here? I take it that the significant properties are the ones which explain the role, function and powers of the object.
15. Nature of Minds / B. Features of Minds / 1. Consciousness / e. Cause of consciousness
Consciousness is reductively explained either by how it represents, or how it is represented [Kriegel/Williford]
     Full Idea: The two main competitors for reductive theories of consciousness are the representational theory (conscious if it represents in the right way), and higher-order monitoring (conscious if it is represented in the right way).
     From: U Kriegel / K Williford (Intro to 'Self-Representational Consciousness' [2006], Intro)
     A reaction: Presumably there are also neuroscientists hunting for physical functions which might generate consciousness. The two mentioned here are rivals at one level of discourse. Both views may be simplistic, if complex teams of activities are involved.
Experiences can be represented consciously or unconsciously, so representation won't explain consciousness [Kriegel/Williford]
     Full Idea: On the assumption that any environmental feature can be represented either consciously or unconsciously, it is unclear how the mere representation of such a feature can render the representing state conscious.
     From: U Kriegel / K Williford (Intro to 'Self-Representational Consciousness' [2006], §1)
     A reaction: The authors are rejecting simple representation as the key, in favour of a distinctive sort of self-representation. I'm inclined to think that consciousness results from multiple co-ordinated layers of representation etc., which has no simple account.
Red tomato experiences are conscious if the state represents the tomato and itself [Kriegel/Williford]
     Full Idea: The self-representational theory of consciousness says that when one has a conscious experience as of a red tomato, one is in an internal state that represents both a red tomato and itself.
     From: U Kriegel / K Williford (Intro to 'Self-Representational Consciousness' [2006], §1)
     A reaction: This seems to be avoiding the concept of 'higher-order', and yet that seems the only way to describe it - thought steps outside of itself, generating a level of meta-thought. I think that's the way to go. Philosophy is about-fifth level.
How is self-representation possible, does it produce a regress, and is experience like that? [Kriegel/Williford]
     Full Idea: The difficulties with a self-representational view of consciousness are how self-representation of mental states could be possible, whether it leads to an infinite regress, and whether it can capture the actual phenomenology of experience.
     From: U Kriegel / K Williford (Intro to 'Self-Representational Consciousness' [2006], §3)
     A reaction: [compressed] All of these objections strike me as persuasive, especially the first one. I'm not sure I know what self-representation is. Mirrors externally represent, and they can't represent themselves. Two mirrors together achieve something..
15. Nature of Minds / B. Features of Minds / 1. Consciousness / f. Higher-order thought
Unfortunately, higher-order representations could involve error [Kriegel/Williford]
     Full Idea: A problem for explaining consciousness by higher-order representations is that, like their first-order counterparts, they can misrepresent; there could be a subjective impression of being in a conscious state without actually being in any conscious state.
     From: U Kriegel / K Williford (Intro to 'Self-Representational Consciousness' [2006], §1)
     A reaction: It sounds plausible that this is a logical possibility, but how do you assess whether it is an actual or natural possibility? Are we saying that higher-order representations are judgments, which could be true or false? Hm.
18. Thought / A. Modes of Thought / 5. Rationality / c. Animal rationality
Aristotle and the Stoics denied rationality to animals, while Platonists affirmed it [Aristotle, by Sorabji]
     Full Idea: Aristotle, and also the Stoics, denied rationality to animals. …The Platonists, the Pythagoreans, and some more independent Aristotelians, did grant reason and intellect to animals.
     From: report of Aristotle (works [c.330 BCE]) by Richard Sorabji - Rationality 'Denial'
     A reaction: This is not the same as affirming or denying their consciousness. The debate depends on how rationality is conceived.
19. Language / C. Assigning Meanings / 3. Predicates
A (modern) predicate is the result of leaving a gap for the name in a sentence [Bostock]
     Full Idea: A simple way of approaching the modern notion of a predicate is this: given any sentence which contains a name, the result of dropping that name and leaving a gap in its place is a predicate. Very different from predicates in Aristotle and Kant.
     From: David Bostock (Intermediate Logic [1997], 3.2)
     A reaction: This concept derives from Frege. To get to grips with contemporary philosophy you have to relearn all sorts of basic words like 'predicate' and 'object'.
19. Language / E. Analyticity / 2. Analytic Truths
The notion of analytic truth is absent in Aristotle [Aristotle, by Politis]
     Full Idea: The notion of analytic truth is conspicuously absent in Aristotle.
     From: report of Aristotle (works [c.330 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 1.5
     A reaction: Cf. Idea 11239.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
Aristotle never actually says that man is a rational animal [Aristotle, by Fogelin]
     Full Idea: To the best of my knowledge (and somewhat to my surprise), Aristotle never actually says that man is a rational animal; however, he all but says it.
     From: report of Aristotle (works [c.330 BCE]) by Robert Fogelin - Walking the Tightrope of Reason Ch.1
     A reaction: When I read this I thought that this database would prove Fogelin wrong, but it actually supports him, as I can't find it in Aristotle either. Descartes refers to it in Med.Two. In Idea 5133 Aristotle does say that man is a 'social being'. But 22586!
25. Social Practice / E. Policies / 5. Education / a. Aims of education
It is the mark of an educated mind to be able to entertain an idea without accepting it [Aristotle]
     Full Idea: It is the mark of an educated mind to be able to entertain an idea without accepting it.
     From: Aristotle (works [c.330 BCE])
     A reaction: The epigraph on a David Chalmers website. A wonderful remark, and it should be on the wall of every beginners' philosophy class. However, while it is in the spirit of Aristotle, it appears to be a misattribution with no ancient provenance.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Aristotle said the educated were superior to the uneducated as the living are to the dead [Aristotle, by Diog. Laertius]
     Full Idea: Aristotle was asked how much educated men were superior to those uneducated; "As much," he said, "as the living are to the dead."
     From: report of Aristotle (works [c.330 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 05.1.11
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
There are potential infinities (never running out), but actual infinity is incoherent [Aristotle, by Friend]
     Full Idea: Aristotle developed his own distinction between potential infinity (never running out) and actual infinity (there being a collection of an actual infinite number of things, such as places, times, objects). He decided that actual infinity was incoherent.
     From: report of Aristotle (works [c.330 BCE]) by Michèle Friend - Introducing the Philosophy of Mathematics 1.3
     A reaction: Friend argues, plausibly, that this won't do, since potential infinity doesn't make much sense if there is not an actual infinity of things to supply the demand. It seems to just illustrate how boggling and uncongenial infinity was to Aristotle.
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / a. Greek matter
Aristotle's matter can become any other kind of matter [Aristotle, by Wiggins]
     Full Idea: Aristotle's conception of matter permits any kind of matter to become any other kind of matter.
     From: report of Aristotle (works [c.330 BCE]) by David Wiggins - Substance 4.11.2
     A reaction: This is obviously crucial background information when we read Aristotle on matter. Our 92+ elements, and fixed fundamental particles, gives a quite different picture. Aristotle would discuss form and matter quite differently now.
29. Religion / A. Polytheistic Religion / 2. Greek Polytheism
The concepts of gods arose from observing the soul, and the cosmos [Aristotle, by Sext.Empiricus]
     Full Idea: Aristotle said that the conception of gods arose among mankind from two originating causes, namely from events which concern the soul and from celestial phenomena.
     From: report of Aristotle (works [c.330 BCE], Frag 10) by Sextus Empiricus - Against the Physicists (two books) I.20
     A reaction: The cosmos suggests order, and possible creation. What do events of the soul suggest? It doesn't seem to be its non-physical nature, because Aristotle is more of a functionalist. Puzzling. (It says later that gods are like the soul).