Combining Texts

All the ideas for 'works', 'The Blank Slate' and 'Introduction to Mathematical Philosophy'

unexpand these ideas     |    start again     |     specify just one area for these texts


89 ideas

1. Philosophy / A. Wisdom / 1. Nature of Wisdom
There is practical wisdom (for action), and theoretical wisdom (for deep understanding) [Aristotle, by Whitcomb]
     Full Idea: Aristotle takes wisdom to come in two forms, the practical and the theoretical, the former of which is good judgement about how to act, and the latter of which is deep knowledge or understanding.
     From: report of Aristotle (works [c.330 BCE]) by Dennis Whitcomb - Wisdom Intro
     A reaction: The interesting question is then whether the two are connected. One might be thoroughly 'sensible' about action, without counting as 'wise', which seems to require a broader view of what is being done. Whitcomb endorses Aristotle on this idea.
1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
'Socrates is human' expresses predication, and 'Socrates is a man' expresses identity [Russell]
     Full Idea: The is of 'Socrates is human' expresses the relation of subject and predicate; the is of 'Socrates is a man' expresses identity. It is a disgrace to the human race that it employs the same word 'is' for these entirely different ideas.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
     A reaction: Does the second one express identity? It sounds more like membership to me. 'Socrates is the guy with the hemlock' is more like identity.
2. Reason / A. Nature of Reason / 2. Logos
For Aristotle logos is essentially the ability to talk rationally about questions of value [Roochnik on Aristotle]
     Full Idea: For Aristotle logos is the ability to speak rationally about, with the hope of attaining knowledge, questions of value.
     From: comment on Aristotle (works [c.330 BCE]) by David Roochnik - The Tragedy of Reason p.26
2. Reason / A. Nature of Reason / 4. Aims of Reason
Aristotle is the supreme optimist about the ability of logos to explain nature [Roochnik on Aristotle]
     Full Idea: Aristotle is the great theoretician who articulates a vision of a world in which natural and stable structures can be rationally discovered. His is the most optimistic and richest view of the possibilities of logos
     From: comment on Aristotle (works [c.330 BCE]) by David Roochnik - The Tragedy of Reason p.95
2. Reason / D. Definition / 3. Types of Definition
A definition by 'extension' enumerates items, and one by 'intension' gives a defining property [Russell]
     Full Idea: The definition of a class or collection which enumerates is called a definition by 'extension', and one which mentions a defining property is called a definition by 'intension'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
     A reaction: In ordinary usage we take intensional definitions for granted, so it is interesting to realise that you might define 'tiger' by just enumerating all the tigers. But all past tigers? All future tigers? All possible tigers which never exist?
2. Reason / D. Definition / 4. Real Definition
Aristotelian definitions aim to give the essential properties of the thing defined [Aristotle, by Quine]
     Full Idea: A real definition, according to the Aristotelian tradition, gives the essence of the kind of thing defined. Man is defined as a rational animal, and thus rationality and animality are of the essence of each of us.
     From: report of Aristotle (works [c.330 BCE]) by Willard Quine - Vagaries of Definition p.51
     A reaction: Compare Idea 4385. Personally I prefer the Aristotelian approach, but we may have to say 'We cannot identify the essence of x, and so x cannot be defined'. Compare 'his mood was hard to define' with 'his mood was hostile'.
2. Reason / D. Definition / 5. Genus and Differentia
Aristotelian definition involves first stating the genus, then the differentia of the thing [Aristotle, by Urmson]
     Full Idea: For Aristotle, to give a definition one must first state the genus and then the differentia of the kind of thing to be defined.
     From: report of Aristotle (works [c.330 BCE]) by J.O. Urmson - Aristotle's Doctrine of the Mean p.157
     A reaction: Presumably a modern definition would just be a list of properties, but Aristotle seeks the substance. How does he define a genus? - by placing it in a further genus?
2. Reason / F. Fallacies / 8. Category Mistake / a. Category mistakes
The sentence 'procrastination drinks quadruplicity' is meaningless, rather than false [Russell, by Orenstein]
     Full Idea: Russell proposed (in his theory of types) that sentences like 'The number two is fond of cream cheese' or 'Procrastination drinks quadruplicity' should be regarded as not false but meaningless.
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919]) by Alex Orenstein - W.V. Quine Ch.3
     A reaction: This seems to be the origin of the notion of a 'category mistake', which Ryle made famous. The problem is always poetry, where abstractions can be reified, or personified, and meaning can be squeezed out of almost anything.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
An argument 'satisfies' a function φx if φa is true [Russell]
     Full Idea: We say that an argument a 'satisfies' a function φx if φa is true.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XV)
     A reaction: We end up with Tarski defining truth in terms of satisfaction, so we shouldn't get too excited about what he achieved (any more than he got excited).
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
The Darapti syllogism is fallacious: All M is S, all M is P, so some S is P' - but if there is no M? [Russell]
     Full Idea: Some moods of the syllogism are fallacious, e.g. 'Darapti': 'All M is S, all M is P, therefore some S is P', which fails if there is no M.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XV)
     A reaction: This critique rests on the fact that the existential quantifier entails some existence, but the universal quantifier does not.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
We can enumerate finite classes, but an intensional definition is needed for infinite classes [Russell]
     Full Idea: We know a great deal about a class without enumerating its members …so definition by extension is not necessary to knowledge about a class ..but enumeration of infinite classes is impossible for finite beings, so definition must be by intension.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
     A reaction: Presumably mathematical induction (which keeps apply the rule to extend the class) will count as an intension here.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Members define a unique class, whereas defining characteristics are numerous [Russell]
     Full Idea: There is only one class having a given set of members, whereas there are always many different characteristics by which a given class may be defined.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity says 'for any inductive cardinal, there is a class having that many terms' [Russell]
     Full Idea: The Axiom of Infinity may be enunciated as 'If n be any inductive cardinal number, there is at least one class of individuals having n terms'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIII)
     A reaction: So for every possible there exists a set of terms for it. Notice that they are 'terms', not 'objects'. We must decide whether we are allowed terms which don't refer to real objects.
We may assume that there are infinite collections, as there is no logical reason against them [Russell]
     Full Idea: There is no logical reason against infinite collections, and we are therefore justified, in logic, in investigating the hypothesis that there are such collections.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VIII)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The British parliament has one representative selected from each constituency [Russell]
     Full Idea: We have a class of representatives, who make up our Parliament, one being selected out of each constituency.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: You can rely on Russell for the clearest illustrations of these abstract ideas. He calls the Axiom of Choice the 'Multiplicative' Axiom.
Choice shows that if any two cardinals are not equal, one must be the greater [Russell]
     Full Idea: The [Axiom of Choice] is also equivalent to the assumption that of any two cardinals which are not equal, one must be the greater.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: It is illuminating for the uninitiated to learn that this result can't be taken for granted (with infinite cardinals).
Choice is equivalent to the proposition that every class is well-ordered [Russell]
     Full Idea: Zermelo has shown that [the Axiom of Choice] is equivalent to the proposition that every class is well-ordered, i.e. can be arranged in a series in which every sub-class has a first term (except, of course, the null class).
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: Russell calls Choice the 'Multiplicative' Axiom.
We can pick all the right or left boots, but socks need Choice to insure the representative class [Russell]
     Full Idea: Among boots we distinguish left and right, so we can choose all the right or left boots; with socks no such principle suggests itself, and we cannot be sure, without the [Axiom of Choice], that there is a class consisting of one sock from each pair.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: A deservedly famous illustration of a rather tricky part of set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Reducibility: a family of functions is equivalent to a single type of function [Russell]
     Full Idea: The Axiom of Reducibility says 'There is a type of a-functions such that, given any a-function, it is formally equivalent to some function of the type in question'. ..It involves all that is really essential in the theory of classes. But is it true?
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVII)
     A reaction: I take this to say that in the theory of types, it is possible to reduce each level of type down to one type.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
Propositions about classes can be reduced to propositions about their defining functions [Russell]
     Full Idea: It is right (in its main lines) to say that there is a reduction of propositions nominally about classes to propositions about their defining functions.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVII)
     A reaction: The defining functions will involve the theory of types, in order to avoid the paradoxes of naïve set theory. This is Russell's strategy for rejecting the existence of sets.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Russell's proposal was that only meaningful predicates have sets as their extensions [Russell, by Orenstein]
     Full Idea: Russell's solution (in the theory of types) consists of restricting the principle that every predicate has a set as its extension so that only meaningful predicates have sets as their extensions.
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919]) by Alex Orenstein - W.V. Quine Ch.3
     A reaction: There might be a chicken-and-egg problem here. How do you decide the members of a set (apart from ostensively) without deciding the predicate(s) that combine them?
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Classes are logical fictions, and are not part of the ultimate furniture of the world [Russell]
     Full Idea: The symbols for classes are mere conveniences, not representing objects called 'classes'. Classes are in fact logical fictions; they cannot be regarded as part of the ultimate furniture of the world.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], Ch.18), quoted by Stewart Shapiro - Thinking About Mathematics 5.2
     A reaction: I agree. For 'logical fictions' read 'abstractions'. To equate abstractions with fictions is to underline the fact that they are a human creation. They are either that or platonic objects - there is no middle way.
4. Formal Logic / G. Formal Mereology / 1. Mereology
Aristotle relativises the notion of wholeness to different measures [Aristotle, by Koslicki]
     Full Idea: Aristotle proposes to relativise unity and plurality, so that a single object can be both one (indivisible) and many (divisible) simultaneously, without contradiction, relative to different measures. Wholeness has degrees, with the strength of the unity.
     From: report of Aristotle (works [c.330 BCE]) by Kathrin Koslicki - The Structure of Objects 7.2.12
     A reaction: [see Koslicki's account of Aristotle for details] As always, the Aristotelian approach looks by far the most promising. Simplistic mechanical accounts of how parts make wholes aren't going to work. We must include the conventional and conceptual bit.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
All the propositions of logic are completely general [Russell]
     Full Idea: It is part of the definition of logic that all its propositions are completely general.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XV)
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
In modern times, logic has become mathematical, and mathematics has become logical [Russell]
     Full Idea: Logic has become more mathematical, and mathematics has become more logical. The consequence is that it has now become wholly impossible to draw a line between the two; in fact, the two are one.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: This appears to be true even if you reject logicism about mathematics. Logicism is sometimes rejected because it always ends up with a sneaky ontological commitment, but maybe mathematics shares exactly the same commitment.
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Logic can only assert hypothetical existence [Russell]
     Full Idea: No proposition of logic can assert 'existence' except under a hypothesis.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: I am prepared to accept this view fairly dogmatically, though Musgrave shows some of the difficulties of the if-thenist view (depending on which 'order' of logic is being used).
Logic is concerned with the real world just as truly as zoology [Russell]
     Full Idea: Logic is concerned with the real world just as truly as zoology, though with its more abstract and general features.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
     A reaction: I love this idea and am very sympathetic to it. The rival view seems to be that logic is purely conventional, perhaps defined by truth tables etc. It is hard to see how a connective like 'tonk' could be self-evidently silly if it wasn't 'unnatural'.
Logic can be known a priori, without study of the actual world [Russell]
     Full Idea: Logical propositions are such as can be known a priori, without study of the actual world.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: This remark constrasts strikingly with Idea 12444, which connects logic to the actual world. Is it therefore a priori synthetic?
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
For Aristotle, the subject-predicate structure of Greek reflected a substance-accident structure of reality [Aristotle, by O'Grady]
     Full Idea: Aristotle apparently believed that the subject-predicate structure of Greek reflected the substance-accident nature of reality.
     From: report of Aristotle (works [c.330 BCE]) by Paul O'Grady - Relativism Ch.4
     A reaction: We need not assume that Aristotle is wrong. It is a chicken-and-egg. There is something obvious about subject-predicate language, if one assumes that unified objects are part of nature, and not just conventional.
5. Theory of Logic / F. Referring in Logic / 1. Naming / b. Names as descriptive
Asking 'Did Homer exist?' is employing an abbreviated description [Russell]
     Full Idea: When we ask whether Homer existed, we are using the word 'Homer' as an abbreviated description.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
     A reaction: It is hard to disagree with Russell over this rather unusual example. It doesn't seem so plausible when Ottiline refers to 'Bertie'.
Russell admitted that even names could also be used as descriptions [Russell, by Bach]
     Full Idea: Russell clearly anticipated Donnellan when he said proper names can also be used as descriptions, adding that 'there is nothing in the phraseology to show whether they are being used in this way or as names'.
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919], p.175) by Kent Bach - What Does It Take to Refer? 22.2 L1
     A reaction: This seems also to anticipate Strawson's flexible and pragmatic approach to these things, which I am beginning to think is correct.
Names are really descriptions, except for a few words like 'this' and 'that' [Russell]
     Full Idea: We can even say that, in all such knowledge as can be expressed in words, with the exception of 'this' and 'that' and a few other words of which the meaning varies on different occasions - no names occur, but what seem like names are really descriptions.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
     A reaction: I like the caveat about what is expressed in words. Russell is very good at keeping non-verbal thought in the picture. This is his famous final reduction of names to simple demonstratives.
5. Theory of Logic / F. Referring in Logic / 1. Naming / f. Names eliminated
The only genuine proper names are 'this' and 'that' [Russell]
     Full Idea: In all knowledge that can be expressed in words - with the exception of "this" and "that", and a few other such words - no genuine proper names occur, but what seem like genuine proper names are really descriptions
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
     A reaction: This is the terminus of Russell's train of thought about descriptions. Suppose you point to something non-existent, like a ghost in a misty churchyard? You'd be back to the original problem of naming a non-existent!
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / a. Descriptions
'I met a unicorn' is meaningful, and so is 'unicorn', but 'a unicorn' is not [Russell]
     Full Idea: In 'I met a unicorn' the four words together make a significant proposition, and the word 'unicorn' is significant, …but the two words 'a unicorn' do not form a group having a meaning of its own. It is an indefinite description describing nothing.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
6. Mathematics / A. Nature of Mathematics / 2. Geometry
If straight lines were like ratios they might intersect at a 'gap', and have no point in common [Russell]
     Full Idea: We wish to say that when two straight lines cross each other they have a point in common, but if the series of points on a line were similar to the series of ratios, the two lines might cross in a 'gap' and have no point in common.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], X)
     A reaction: You can make a Dedekind Cut in the line of ratios (the rationals), so there must be gaps. I love this idea. We take for granted intersection at a point, but physical lines may not coincide. That abstract lines might fail also is lovely!
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
New numbers solve problems: negatives for subtraction, fractions for division, complex for equations [Russell]
     Full Idea: Every generalisation of number has presented itself as needed for some simple problem. Negative numbers are needed to make subtraction always possible; fractions to make division always possible; complex numbers to make solutions of equations possible.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VII)
     A reaction: Doesn't this rather suggest that we made them up? If new problems turn up, we'll invent another lot. We already have added 'surreal' numbers.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Could a number just be something which occurs in a progression? [Russell, by Hart,WD]
     Full Idea: Russell toyed with the idea that there is nothing to being a natural number beyond occurring in a progression
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919], p.8) by William D. Hart - The Evolution of Logic 5
     A reaction: How could you define a progression, without a prior access to numbers? - Arrange all the objects in the universe in ascending order of mass. Use scales to make the selection. Hence a finite progression, with no numbers!
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A series can be 'Cut' in two, where the lower class has no maximum, the upper no minimum [Russell]
     Full Idea: There is no maximum to the ratios whose square is less than 2, and no minimum to those whose square is greater than 2. This division of a series into two classes is called a 'Dedekind Cut'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VII)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / j. Complex numbers
A complex number is simply an ordered couple of real numbers [Russell]
     Full Idea: A complex number may be regarded and defined as simply an ordered couple of real numbers
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VII)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
Discovering that 1 is a number was difficult [Russell]
     Full Idea: The discovery that 1 is a number must have been difficult.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
     A reaction: Interesting that he calls it a 'discovery'. I am tempted to call it a 'decision'.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Numbers are needed for counting, so they need a meaning, and not just formal properties [Russell]
     Full Idea: We want our numbers to be such as can be used for counting common objects, and this requires that our numbers should have a definite meaning, not merely that they should have certain formal properties.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
     A reaction: Why would just having certain formal properties be insufficient for counting? You just need an ordered series of unique items. It isn't just that we 'want' this. If you define something that we can't count with, you haven't defined numbers.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
The formal laws of arithmetic are the Commutative, the Associative and the Distributive [Russell]
     Full Idea: The usual formal laws of arithmetic are the Commutative Law [a+b=b+a and axb=bxa], the Associative Law [(a+b)+c=a+(b+c) and (axb)xc=ax(bxc)], and the Distributive Law [a(b+c)=ab+ac)].
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], IX)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Infinity and continuity used to be philosophy, but are now mathematics [Russell]
     Full Idea: The nature of infinity and continuity belonged in former days to philosophy, but belongs now to mathematics.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], Pref)
     A reaction: It is hard to disagree, since mathematicians since Cantor have revealed so much about infinite numbers (through set theory), but I think it remains an open question whether philosophers have anything distinctive to contribute.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The definition of order needs a transitive relation, to leap over infinite intermediate terms [Russell]
     Full Idea: Order must be defined by means of a transitive relation, since only such a relation is able to leap over an infinite number of intermediate terms. ...Without it we would not be able to define the order of magnitude among fractions.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], IV)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Any founded, non-repeating series all reachable in steps will satisfy Peano's axioms [Russell]
     Full Idea: Given any series which is endless, contains no repetitions, has a beginning, and has no terms that cannot be reached from the beginning in a finite number of steps, we have a set of terms verifying Peano's axioms.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
'0', 'number' and 'successor' cannot be defined by Peano's axioms [Russell]
     Full Idea: That '0', 'number' and 'successor' cannot be defined by means of Peano's five axioms, but must be independently understood.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
A number is something which characterises collections of the same size [Russell]
     Full Idea: The number 3 is something which all trios have in common, and which distinguishes them from other collections. A number is something that characterises certain collections, namely, those that have that number.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
     A reaction: This is a verbal summary of the Fregean view of numbers, which marks the arrival of set theory as the way arithmetic will in future be characterised. The question is whether set theory captures all aspects of numbers. Does it give a tool for counting?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
What matters is the logical interrelation of mathematical terms, not their intrinsic nature [Russell]
     Full Idea: What matters in mathematics is not the intrinsic nature of our terms, but the logical nature of their interrelations.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VI)
     A reaction: If they have an instrinsic nature, that would matter far more, because that would dictate the interrelations. Structuralism seems to require that they don't actually have any intrinsic nature.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Maybe numbers are adjectives, since 'ten men' grammatically resembles 'white men' [Russell]
     Full Idea: 'Ten men' is grammatically the same form as 'white men', so that 10 might be thought to be an adjective qualifying 'men'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: The immediate problem, as Frege spotted, is that such expressions can be rephrased to remove the adjective (by saying 'the number of men is ten').
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
For Russell, numbers are sets of equivalent sets [Russell, by Benacerraf]
     Full Idea: Russell's own stand was that numbers are really only sets of equivalent sets.
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919]) by Paul Benacerraf - Logicism, Some Considerations (PhD) p.168
     A reaction: Benacerraf is launching a nice attack on this view, based on our inability to grasp huge numbers on this basis, or to see their natural order.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / e. Psychologism
There is always something psychological about inference [Russell]
     Full Idea: There is always unavoidably something psychological about inference.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIV)
     A reaction: Glad to find Russell saying that. Only pure Fregeans dream of a logic that rises totally above the minds that think it. See Robert Hanna on the subject.
7. Existence / A. Nature of Existence / 1. Nature of Existence
Existence can only be asserted of something described, not of something named [Russell]
     Full Idea: Existence can only be asserted of something described, not of something named.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: This is the motivation behind Russell's theory of definite descriptions, and epitomises the approach to ontology through language. Sounds wrong to me!
7. Existence / C. Structure of Existence / 2. Reduction
Good reductionism connects fields of knowledge, but doesn't replace one with another [Pinker]
     Full Idea: Good reductionism (also called 'hierarchical reductionism') consists not of replacing one field of knowledge with another, but of connecting or unifying them.
     From: Steven Pinker (The Blank Slate [2002], Ch.4)
     A reaction: A nice simple clarification. In this sense I am definitely a reductionist about mind (indeed, about everything). There is nothing threatening to even 'spiritual' understanding by saying that it is connected to the brain.
7. Existence / D. Theories of Reality / 7. Fictionalism
Classes are logical fictions, made from defining characteristics [Russell]
     Full Idea: Classes may be regarded as logical fictions, manufactured out of defining characteristics.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II n1)
     A reaction: I agree with this. The idea that in addition to the members there is a further object, the set containing them, is absurd. Sets are a tool for thinking about the world.
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
If a relation is symmetrical and transitive, it has to be reflexive [Russell]
     Full Idea: It is obvious that a relation which is symmetrical and transitive must be reflexive throughout its domain.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
     A reaction: Compare Idea 13543! The relation will return to its originator via its neighbours, rather than being directly reflexive?
'Asymmetry' is incompatible with its converse; a is husband of b, so b can't be husband of a [Russell]
     Full Idea: The relation of 'asymmetry' is incompatible with the converse. …The relation 'husband' is asymmetrical, so that if a is the husband of b, b cannot be the husband of a.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], V)
     A reaction: This is to be contrasted with 'non-symmetrical', where there just happens to be no symmetry.
9. Objects / C. Structure of Objects / 2. Hylomorphism / a. Hylomorphism
The unmoved mover and the soul show Aristotelian form as the ultimate mereological atom [Aristotle, by Koslicki]
     Full Idea: Aristotle's discussion of the unmoved mover and of the soul confirms the suspicion that form, when it is not thought of as the object represented in a definition, plays the role of the ultimate mereological atom within his system.
     From: report of Aristotle (works [c.330 BCE]) by Kathrin Koslicki - The Structure of Objects 6.6
     A reaction: Aristotle is concerned with which things are 'divisible', and he cites these two examples as indivisible, but they may be too unusual to offer an actual theory of how Aristotle builds up wholes from atoms. He denies atoms in matter.
9. Objects / C. Structure of Objects / 2. Hylomorphism / d. Form as unifier
The 'form' is the recipe for building wholes of a particular kind [Aristotle, by Koslicki]
     Full Idea: Thus in Aristotle we may think of an object's formal components as a sort of recipe for how to build wholes of that particular kind.
     From: report of Aristotle (works [c.330 BCE]) by Kathrin Koslicki - The Structure of Objects 7.2.5
     A reaction: In the elusive business of pinning down what Aristotle means by the crucial idea of 'form', this analogy strikes me as being quite illuminating. It would fit DNA in living things, and the design of an artifact.
9. Objects / D. Essence of Objects / 3. Individual Essences
The essence of individuality is beyond description, and hence irrelevant to science [Russell]
     Full Idea: The essence of individuality always eludes words and baffles description, and is for that very reason irrelevant to science.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VI)
     A reaction: [context needed for a full grasp of this idea] Russell seems to refer to essence as much as to individuality. The modern essentialist view is that essences are not beyond description after all. Fundamental physics is clearer now than in 1919.
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
Inferring q from p only needs p to be true, and 'not-p or q' to be true [Russell]
     Full Idea: In order that it be valid to infer q from p, it is only necessary that p should be true and that the proposition 'not-p or q' should be true.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIV)
     A reaction: Rumfitt points out that this approach to logical consequences is a denial of any modal aspect, such as 'logical necessity'. Russell observes that for a good inference you must know the disjunction as a whole. Could disjunction be modal?...
All forms of implication are expressible as truth-functions [Russell]
     Full Idea: There is no need to admit as a fundamental notion any form of implication not expressible as a truth-function.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIV)
     A reaction: Note that this is from a book about 'mathematical' philosophy. Nevertheless, it seems to have the form of a universal credo for Russell. He wasn't talking about conditionals here. Maybe conditionals are not implications (in isolation, that is).
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
If something is true in all possible worlds then it is logically necessary [Russell]
     Full Idea: Saying that the axiom of reducibility is logically necessary is what would be meant by saying that it is true in all possible worlds.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVII)
     A reaction: This striking remark is a nice bridge between Leibniz (about whom Russell wrote a book) and Kripke.
11. Knowledge Aims / A. Knowledge / 1. Knowledge
For Aristotle, knowledge is of causes, and is theoretical, practical or productive [Aristotle, by Code]
     Full Idea: Aristotle thinks that in general we have knowledge or understanding when we grasp causes, and he distinguishes three fundamental types of knowledge - theoretical, practical and productive.
     From: report of Aristotle (works [c.330 BCE]) by Alan D. Code - Aristotle
     A reaction: Productive knowledge we tend to label as 'knowing how'. The centrality of causes for knowledge would get Aristotle nowadays labelled as a 'naturalist'. It is hard to disagree with his three types, though they may overlap.
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
The notion of a priori truth is absent in Aristotle [Aristotle, by Politis]
     Full Idea: The notion of a priori truth is conspicuously absent in Aristotle.
     From: report of Aristotle (works [c.330 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 1.5
     A reaction: Cf. Idea 11240.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Aristotle is a rationalist, but reason is slowly acquired through perception and experience [Aristotle, by Frede,M]
     Full Idea: Aristotle is a rationalist …but reason for him is a disposition which we only acquire over time. Its acquisition is made possible primarily by perception and experience.
     From: report of Aristotle (works [c.330 BCE]) by Michael Frede - Aristotle's Rationalism p.173
     A reaction: I would describe this process as the gradual acquisition of the skill of objectivity, which needs the right knowledge and concepts to evaluate new experiences.
12. Knowledge Sources / D. Empiricism / 2. Associationism
Connectionists say the mind is a general purpose learning device [Pinker]
     Full Idea: Connectionists do not, of course, believe that the mind is a blank slate, but they do believe in the closest mechanistic equivalent, a general purpose learning device.
     From: Steven Pinker (The Blank Slate [2002], Ch.5)
     A reaction: This shows the closeness of connectionism to Hume's associationism (Idea 2189), which was just a minimal step away from Locke's mind as 'white paper' (Idea 7507). Pinker is defending 'human nature', but connectionism has a point.
12. Knowledge Sources / E. Direct Knowledge / 2. Intuition
Aristotle wants to fit common intuitions, and therefore uses language as a guide [Aristotle, by Gill,ML]
     Full Idea: Since Aristotle generally prefers a metaphysical theory that accords with common intuitions, he frequently relies on facts about language to guide his metaphysical claims.
     From: report of Aristotle (works [c.330 BCE]) by Mary Louise Gill - Aristotle on Substance Ch.5
     A reaction: I approve of his procedure. I take intuition to be largely rational justifications too complex for us to enunciate fully, and language embodies folk intuitions in its concepts (especially if the concepts occur in many languages).
12. Knowledge Sources / E. Direct Knowledge / 4. Memory
Is memory stored in protein sequences, neurons, synapses, or synapse-strengths? [Pinker]
     Full Idea: Are memories stored in protein sequences, in new neurons or synapses, or in changes in the strength of existing synapses?
     From: Steven Pinker (The Blank Slate [2002], Ch.5)
     A reaction: This seems to be a neat summary of current neuroscientific thinking about memory. If you are thinking that memory couldn't possibly be so physical, don't forget the mind-boggling number of events involved in each tiny memory. See Idea 6668.
14. Science / B. Scientific Theories / 1. Scientific Theory
Plato says sciences are unified around Forms; Aristotle says they're unified around substance [Aristotle, by Moravcsik]
     Full Idea: Plato's unity of science principle states that all - legitimate - sciences are ultimately about the Forms. Aristotle's principle states that all sciences must be, ultimately, about substances, or aspects of substances.
     From: report of Aristotle (works [c.330 BCE], 1) by Julius Moravcsik - Aristotle on Adequate Explanations 1
Mathematically expressed propositions are true of the world, but how to interpret them? [Russell]
     Full Idea: We know that certain scientific propositions - often expressed in mathematical symbols - are more or less true of the world, but we are very much at sea as to the interpretation to be put upon the terms which occur in these propositions.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VI)
     A reaction: Enter essentialism, say I! Russell's remark is pretty understandable in 1919, but I don't think the situation has changed much. The problem of interpretation may be of more interest to philosophers than to physicists.
14. Science / D. Explanation / 1. Explanation / a. Explanation
Aristotelian explanations are facts, while modern explanations depend on human conceptions [Aristotle, by Politis]
     Full Idea: For Aristotle things which explain (the explanantia) are facts, which should not be associated with the modern view that says explanations are dependent on how we conceive and describe the world (where causes are independent of us).
     From: report of Aristotle (works [c.330 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 2.1
     A reaction: There must be some room in modern thought for the Aristotelian view, if some sort of robust scientific realism is being maintained against the highly linguistic view of philosophy found in the twentieth century.
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
Aristotle's standard analysis of species and genus involves specifying things in terms of something more general [Aristotle, by Benardete,JA]
     Full Idea: The standard Aristotelian doctrine of species and genus in the theory of anything whatever involves specifying what the thing is in terms of something more general.
     From: report of Aristotle (works [c.330 BCE]) by José A. Benardete - Metaphysics: the logical approach Ch.10
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
Aristotle regularly says that essential properties explain other significant properties [Aristotle, by Kung]
     Full Idea: The view that essential properties are those in virtue of which other significant properties of the subjects under investigation can be explained is encountered repeatedly in Aristotle's work.
     From: report of Aristotle (works [c.330 BCE]) by Joan Kung - Aristotle on Essence and Explanation IV
     A reaction: What does 'significant' mean here? I take it that the significant properties are the ones which explain the role, function and powers of the object.
16. Persons / F. Free Will / 5. Against Free Will
Roundworms live successfully with 302 neurons, so human freedom comes from our trillions [Pinker]
     Full Idea: The roundworm only has 959 cells, and 302 neurons in a fixed wiring diagram; it eats, mates, approaches and avoids certain smells, and that's about it. This makes it obvious that human 'free' behaviour comes from our complex biological makeup.
     From: Steven Pinker (The Blank Slate [2002], Ch.5)
     A reaction: I find this a persuasive example. Three hundred trillion neurons cannot possibly produce behaviour which is more than broadly predictable, and then it is the environment and culture that make it predictable, not the biology.
17. Mind and Body / E. Mind as Physical / 4. Connectionism
Neural networks can generalise their training, e.g. truths about tigers apply mostly to lions [Pinker]
     Full Idea: The appeal of neural networks is that they automatically generalize their training to similar new items. If one has been trained to think tigers eat frosted flakes, it will generalise that lions do too, because it knows tigers as sets of features.
     From: Steven Pinker (The Blank Slate [2002], Ch.5)
     A reaction: This certainly is appealing, because it offers a mechanistic account of abstraction and universals, which everyone agrees are central to proper thinking.
There are five types of reasoning that seem beyond connectionist systems [Pinker, by PG]
     Full Idea: Connectionist networks have difficulty with the kind/individual distinction (ducks/this duck), with compositionality (relations), with quantification (reference of 'all'), with recursion (embedded thoughts), and the categorical reasoning (exceptions).
     From: report of Steven Pinker (The Blank Slate [2002], Ch.5) by PG - Db (ideas)
     A reaction: [Read Pinker p.80!] These are essentially all the more sophisticated aspects of logical reasoning that Pinker can think of. Personally I would be reluctant to say a priori that connectionism couldn't cope with these things, just because they seem tough.
18. Thought / A. Modes of Thought / 5. Rationality / c. Animal rationality
Aristotle and the Stoics denied rationality to animals, while Platonists affirmed it [Aristotle, by Sorabji]
     Full Idea: Aristotle, and also the Stoics, denied rationality to animals. …The Platonists, the Pythagoreans, and some more independent Aristotelians, did grant reason and intellect to animals.
     From: report of Aristotle (works [c.330 BCE]) by Richard Sorabji - Rationality 'Denial'
     A reaction: This is not the same as affirming or denying their consciousness. The debate depends on how rationality is conceived.
19. Language / D. Propositions / 1. Propositions
Propositions are mainly verbal expressions of true or false, and perhaps also symbolic thoughts [Russell]
     Full Idea: We mean by 'proposition' primarily a form of words which expresses what is either true or false. I say 'primarily' because I do not wish to exclude other than verbal symbols, or even mere thoughts if they have a symbolic character.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XV)
     A reaction: I like the last bit, as I think of propositions as pre-verbal thoughts, and I am sympathetic to Fodor's 'language of thought' thesis, that there is a system of representations within the brain.
19. Language / E. Analyticity / 2. Analytic Truths
The notion of analytic truth is absent in Aristotle [Aristotle, by Politis]
     Full Idea: The notion of analytic truth is conspicuously absent in Aristotle.
     From: report of Aristotle (works [c.330 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 1.5
     A reaction: Cf. Idea 11239.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
Aristotle never actually says that man is a rational animal [Aristotle, by Fogelin]
     Full Idea: To the best of my knowledge (and somewhat to my surprise), Aristotle never actually says that man is a rational animal; however, he all but says it.
     From: report of Aristotle (works [c.330 BCE]) by Robert Fogelin - Walking the Tightrope of Reason Ch.1
     A reaction: When I read this I thought that this database would prove Fogelin wrong, but it actually supports him, as I can't find it in Aristotle either. Descartes refers to it in Med.Two. In Idea 5133 Aristotle does say that man is a 'social being'. But 22586!
Many think that accepting human nature is to accept innumerable evils [Pinker]
     Full Idea: To acknowledge human nature, many think, is to endorse racism, sexism, war, greed, genocide, nihilism, reactionary politics, and neglect of children and the disadvantaged.
     From: Steven Pinker (The Blank Slate [2002], Pref)
     A reaction: The point is that modern liberal thinking says everything is nurture (which can be changed), not nature (which can't). Virtue theory, of which I am a fan, requires a concept of human nature, as the thing which can attain excellence in its function.
25. Social Practice / E. Policies / 5. Education / a. Aims of education
It is the mark of an educated mind to be able to entertain an idea without accepting it [Aristotle]
     Full Idea: It is the mark of an educated mind to be able to entertain an idea without accepting it.
     From: Aristotle (works [c.330 BCE])
     A reaction: The epigraph on a David Chalmers website. A wonderful remark, and it should be on the wall of every beginners' philosophy class. However, while it is in the spirit of Aristotle, it appears to be a misattribution with no ancient provenance.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Aristotle said the educated were superior to the uneducated as the living are to the dead [Aristotle, by Diog. Laertius]
     Full Idea: Aristotle was asked how much educated men were superior to those uneducated; "As much," he said, "as the living are to the dead."
     From: report of Aristotle (works [c.330 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 05.1.11
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
There are potential infinities (never running out), but actual infinity is incoherent [Aristotle, by Friend]
     Full Idea: Aristotle developed his own distinction between potential infinity (never running out) and actual infinity (there being a collection of an actual infinite number of things, such as places, times, objects). He decided that actual infinity was incoherent.
     From: report of Aristotle (works [c.330 BCE]) by Michèle Friend - Introducing the Philosophy of Mathematics 1.3
     A reaction: Friend argues, plausibly, that this won't do, since potential infinity doesn't make much sense if there is not an actual infinity of things to supply the demand. It seems to just illustrate how boggling and uncongenial infinity was to Aristotle.
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / a. Greek matter
Aristotle's matter can become any other kind of matter [Aristotle, by Wiggins]
     Full Idea: Aristotle's conception of matter permits any kind of matter to become any other kind of matter.
     From: report of Aristotle (works [c.330 BCE]) by David Wiggins - Substance 4.11.2
     A reaction: This is obviously crucial background information when we read Aristotle on matter. Our 92+ elements, and fixed fundamental particles, gives a quite different picture. Aristotle would discuss form and matter quite differently now.
27. Natural Reality / G. Biology / 2. Life
In 1828, the stuff of life was shown to be ordinary chemistry, not a magic gel [Pinker]
     Full Idea: In 1828 Friedrich Wöhler showed [by synthesising urea in the laboratory] that the stuff of life is not a magical, pulsating gel, but ordinary compounds following the laws of chemistry.
     From: Steven Pinker (The Blank Slate [2002], Ch.3)
     A reaction: Wöhler synthesised urea in the laboratory.
27. Natural Reality / G. Biology / 3. Evolution
All the evidence says evolution is cruel and wasteful, not intelligent [Pinker]
     Full Idea: The overwhelming evidence is that the process of evolution, far from being intelligent and purposeful, is wasteful and cruel.
     From: Steven Pinker (The Blank Slate [2002], Ch.7)
     A reaction: This is why opponents should reject evolution totally, rather than compromise with it. Stick to a 6000-year-old world, fossils sent to test our faith, and species created in a flash (with no pain or waste).
Intelligent Design says that every unexplained phenomenon must be design, by default [Pinker]
     Full Idea: The originator of 'intelligent design' (the biochemist Michael Behe) takes every phenomenon whose evolutionary history has not yet been figured out, and chalks it up to design by default.
     From: Steven Pinker (The Blank Slate [2002], Ch.7)
     A reaction: This seems to summarise the strategy very nicely. The theory essentially exploits the 'wow!' factor. The bigger the wow! the more likely it is that it was created by God. But research has been eroding our wows steadily for four hundred years.
29. Religion / A. Polytheistic Religion / 2. Greek Polytheism
The concepts of gods arose from observing the soul, and the cosmos [Aristotle, by Sext.Empiricus]
     Full Idea: Aristotle said that the conception of gods arose among mankind from two originating causes, namely from events which concern the soul and from celestial phenomena.
     From: report of Aristotle (works [c.330 BCE], Frag 10) by Sextus Empiricus - Against the Physicists (two books) I.20
     A reaction: The cosmos suggests order, and possible creation. What do events of the soul suggest? It doesn't seem to be its non-physical nature, because Aristotle is more of a functionalist. Puzzling. (It says later that gods are like the soul).