Combining Texts

All the ideas for 'works', 'A Matter of Principle' and 'Nature and Meaning of Numbers'

unexpand these ideas     |    start again     |     specify just one area for these texts


49 ideas

1. Philosophy / A. Wisdom / 1. Nature of Wisdom
There is practical wisdom (for action), and theoretical wisdom (for deep understanding) [Aristotle, by Whitcomb]
     Full Idea: Aristotle takes wisdom to come in two forms, the practical and the theoretical, the former of which is good judgement about how to act, and the latter of which is deep knowledge or understanding.
     From: report of Aristotle (works [c.330 BCE]) by Dennis Whitcomb - Wisdom Intro
     A reaction: The interesting question is then whether the two are connected. One might be thoroughly 'sensible' about action, without counting as 'wise', which seems to require a broader view of what is being done. Whitcomb endorses Aristotle on this idea.
2. Reason / A. Nature of Reason / 2. Logos
For Aristotle logos is essentially the ability to talk rationally about questions of value [Roochnik on Aristotle]
     Full Idea: For Aristotle logos is the ability to speak rationally about, with the hope of attaining knowledge, questions of value.
     From: comment on Aristotle (works [c.330 BCE]) by David Roochnik - The Tragedy of Reason p.26
2. Reason / A. Nature of Reason / 4. Aims of Reason
Aristotle is the supreme optimist about the ability of logos to explain nature [Roochnik on Aristotle]
     Full Idea: Aristotle is the great theoretician who articulates a vision of a world in which natural and stable structures can be rationally discovered. His is the most optimistic and richest view of the possibilities of logos
     From: comment on Aristotle (works [c.330 BCE]) by David Roochnik - The Tragedy of Reason p.95
2. Reason / D. Definition / 4. Real Definition
Aristotelian definitions aim to give the essential properties of the thing defined [Aristotle, by Quine]
     Full Idea: A real definition, according to the Aristotelian tradition, gives the essence of the kind of thing defined. Man is defined as a rational animal, and thus rationality and animality are of the essence of each of us.
     From: report of Aristotle (works [c.330 BCE]) by Willard Quine - Vagaries of Definition p.51
     A reaction: Compare Idea 4385. Personally I prefer the Aristotelian approach, but we may have to say 'We cannot identify the essence of x, and so x cannot be defined'. Compare 'his mood was hard to define' with 'his mood was hostile'.
2. Reason / D. Definition / 5. Genus and Differentia
Aristotelian definition involves first stating the genus, then the differentia of the thing [Aristotle, by Urmson]
     Full Idea: For Aristotle, to give a definition one must first state the genus and then the differentia of the kind of thing to be defined.
     From: report of Aristotle (works [c.330 BCE]) by J.O. Urmson - Aristotle's Doctrine of the Mean p.157
     A reaction: Presumably a modern definition would just be a list of properties, but Aristotle seeks the substance. How does he define a genus? - by placing it in a further genus?
2. Reason / D. Definition / 9. Recursive Definition
Dedekind proved definition by recursion, and thus proved the basic laws of arithmetic [Dedekind, by Potter]
     Full Idea: Dedkind gave a rigorous proof of the principle of definition by recursion, permitting recursive definitions of addition and multiplication, and hence proofs of the familiar arithmetical laws.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 13 'Deriv'
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
An infinite set maps into its own proper subset [Dedekind, by Reck/Price]
     Full Idea: A set is 'Dedekind-infinite' iff there exists a one-to-one function that maps a set into a proper subset of itself.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888], §64) by E Reck / M Price - Structures and Structuralism in Phil of Maths n 7
     A reaction: Sounds as if it is only infinite if it is contradictory, or doesn't know how big it is!
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
We have the idea of self, and an idea of that idea, and so on, so infinite ideas are available [Dedekind, by Potter]
     Full Idea: Dedekind had an interesting proof of the Axiom of Infinity. He held that I have an a priori grasp of the idea of my self, and that every idea I can form the idea of that idea. Hence there are infinitely many objects available to me a priori.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888], no. 66) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 12 'Numb'
     A reaction: Who said that Descartes' Cogito was of no use? Frege endorsed this, as long as the ideas are objective and not subjective.
4. Formal Logic / G. Formal Mereology / 1. Mereology
Aristotle relativises the notion of wholeness to different measures [Aristotle, by Koslicki]
     Full Idea: Aristotle proposes to relativise unity and plurality, so that a single object can be both one (indivisible) and many (divisible) simultaneously, without contradiction, relative to different measures. Wholeness has degrees, with the strength of the unity.
     From: report of Aristotle (works [c.330 BCE]) by Kathrin Koslicki - The Structure of Objects 7.2.12
     A reaction: [see Koslicki's account of Aristotle for details] As always, the Aristotelian approach looks by far the most promising. Simplistic mechanical accounts of how parts make wholes aren't going to work. We must include the conventional and conceptual bit.
Dedekind originally thought more in terms of mereology than of sets [Dedekind, by Potter]
     Full Idea: Dedekind plainly had fusions, not collections, in mind when he avoided the empty set and used the same symbol for membership and inclusion - two tell-tale signs of a mereological conception.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888], 2-3) by Michael Potter - Set Theory and Its Philosophy 02.1
     A reaction: Potter suggests that mathematicians were torn between mereology and sets, and eventually opted whole-heartedly for sets. Maybe this is only because set theory was axiomatised by Zermelo some years before Lezniewski got to mereology.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
For Aristotle, the subject-predicate structure of Greek reflected a substance-accident structure of reality [Aristotle, by O'Grady]
     Full Idea: Aristotle apparently believed that the subject-predicate structure of Greek reflected the substance-accident nature of reality.
     From: report of Aristotle (works [c.330 BCE]) by Paul O'Grady - Relativism Ch.4
     A reaction: We need not assume that Aristotle is wrong. It is a chicken-and-egg. There is something obvious about subject-predicate language, if one assumes that unified objects are part of nature, and not just conventional.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Numbers are free creations of the human mind, to understand differences [Dedekind]
     Full Idea: Numbers are free creations of the human mind; they serve as a means of apprehending more easily and more sharply the difference of things.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], Pref)
     A reaction: Does this fit real numbers and complex numbers, as well as natural numbers? Frege was concerned by the lack of objectivity in this sort of view. What sort of arithmetic might the Martians have created? Numbers register sameness too.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Dedekind defined the integers, rationals and reals in terms of just the natural numbers [Dedekind, by George/Velleman]
     Full Idea: It was primarily Dedekind's accomplishment to define the integers, rationals and reals, taking only the system of natural numbers for granted.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by A.George / D.J.Velleman - Philosophies of Mathematics Intro
Ordinals can define cardinals, as the smallest ordinal that maps the set [Dedekind, by Heck]
     Full Idea: Dedekind and Cantor said the cardinals may be defined in terms of the ordinals: The cardinal number of a set S is the least ordinal onto whose predecessors the members of S can be mapped one-one.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 5
Order, not quantity, is central to defining numbers [Dedekind, by Monk]
     Full Idea: Dedekind said that the notion of order, rather than that of quantity, is the central notion in the definition of number.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Ray Monk - Bertrand Russell: Spirit of Solitude Ch.4
     A reaction: Compare Aristotle's nice question in Idea 646. My intuition is that quantity comes first, because I'm not sure HOW you could count, if you didn't think you were changing the quantity each time. Why does counting go in THAT particular order? Cf. Idea 8661.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Dedekind's ordinals are just members of any progression whatever [Dedekind, by Russell]
     Full Idea: Dedekind's ordinals are not essentially either ordinals or cardinals, but the members of any progression whatever.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Bertrand Russell - The Principles of Mathematics §243
     A reaction: This is part of Russell's objection to Dedekind's structuralism. The question is always why these beautiful structures should actually be considered as numbers. I say, unlike Russell, that the connection to counting is crucial.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
Dedekind's axiom that his Cut must be filled has the advantages of theft over honest toil [Dedekind, by Russell]
     Full Idea: Dedekind set up the axiom that the gap in his 'cut' must always be filled …The method of 'postulating' what we want has many advantages; they are the same as the advantages of theft over honest toil. Let us leave them to others.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Bertrand Russell - Introduction to Mathematical Philosophy VII
     A reaction: This remark of Russell's is famous, and much quoted in other contexts, but I have seen the modern comment that it is grossly unfair to Dedekind.
Dedekind says each cut matches a real; logicists say the cuts are the reals [Dedekind, by Bostock]
     Full Idea: One view, favoured by Dedekind, is that the cut postulates a real number for each cut in the rationals; it does not identify real numbers with cuts. ....A view favoured by later logicists is simply to identify a real number with a cut.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by David Bostock - Philosophy of Mathematics 4.4
     A reaction: Dedekind is the patriarch of structuralism about mathematics, so he has little interest in the existenc of 'objects'.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
In counting we see the human ability to relate, correspond and represent [Dedekind]
     Full Idea: If we scrutinize closely what is done in counting an aggregate of things, we see the ability of the mind to relate things to things, to let a thing correspond to a thing, or to represent a thing by a thing, without which no thinking is possible.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], Pref)
     A reaction: I don't suppose it occurred to Dedekind that he was reasserting Hume's observation about the fundamental psychology of thought. Is the origin of our numerical ability of philosophical interest?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / b. Mark of the infinite
A system S is said to be infinite when it is similar to a proper part of itself [Dedekind]
     Full Idea: A system S is said to be infinite when it is similar to a proper part of itself.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], V.64)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Dedekind gives a base number which isn't a successor, then adds successors and induction [Dedekind, by Hart,WD]
     Full Idea: Dedekind's natural numbers: an object is in a set (0 is a number), a function sends the set one-one into itself (numbers have unique successors), the object isn't a value of the function (it isn't a successor), plus induction.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by William D. Hart - The Evolution of Logic 5
     A reaction: Hart notes that since this refers to sets of individuals, it is a second-order account of numbers, what we now call 'Second-Order Peano Arithmetic'.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Zero is a member, and all successors; numbers are the intersection of sets satisfying this [Dedekind, by Bostock]
     Full Idea: Dedekind's idea is that the set of natural numbers has zero as a member, and also has as a member the successor of each of its members, and it is the smallest set satisfying this condition. It is the intersection of all sets satisfying the condition.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by David Bostock - Philosophy of Mathematics 4.4
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Categoricity implies that Dedekind has characterised the numbers, because it has one domain [Rumfitt on Dedekind]
     Full Idea: It is Dedekind's categoricity result that convinces most of us that he has articulated our implicit conception of the natural numbers, since it entitles us to speak of 'the' domain (in the singular, up to isomorphism) of natural numbers.
     From: comment on Richard Dedekind (Nature and Meaning of Numbers [1888]) by Ian Rumfitt - The Boundary Stones of Thought 9.1
     A reaction: The main rival is set theory, but that has an endlessly expanding domain. He points out that Dedekind needs second-order logic to achieve categoricity. Rumfitt says one could also add to the 1st-order version that successor is an ancestral relation.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Induction is proved in Dedekind, an axiom in Peano; the latter seems simpler and clearer [Dedekind, by Russell]
     Full Idea: Dedekind proves mathematical induction, while Peano regards it as an axiom, ...and Peano's method has the advantage of simplicity, and a clearer separation between the particular and the general propositions of arithmetic.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Bertrand Russell - The Principles of Mathematics §241
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Dedekind originated the structuralist conception of mathematics [Dedekind, by MacBride]
     Full Idea: Dedekind is the philosopher-mathematician with whom the structuralist conception originates.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888], §3 n13) by Fraser MacBride - Structuralism Reconsidered
     A reaction: Hellman says the idea grew naturally out of modern mathematics, and cites Hilbert's belief that furniture would do as mathematical objects.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Dedekindian abstraction talks of 'positions', where Cantorian abstraction talks of similar objects [Dedekind, by Fine,K]
     Full Idea: Dedekindian abstraction says mathematical objects are 'positions' in a model, while Cantorian abstraction says they are the result of abstracting on structurally similar objects.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Kit Fine - Cantorian Abstraction: Recon. and Defence §6
     A reaction: The key debate among structuralists seems to be whether or not they are committed to 'objects'. Fine rejects the 'austere' version, which says that objects have no properties. Either version of structuralism can have abstraction as its basis.
9. Objects / A. Existence of Objects / 3. Objects in Thought
A thing is completely determined by all that can be thought concerning it [Dedekind]
     Full Idea: A thing (an object of our thought) is completely determined by all that can be affirmed or thought concerning it.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], I.1)
     A reaction: How could you justify this as an observation? Why can't there be unthinkable things (even by God)? Presumably Dedekind is offering a stipulative definition, but we may then be confusing epistemology with ontology.
9. Objects / C. Structure of Objects / 2. Hylomorphism / a. Hylomorphism
The unmoved mover and the soul show Aristotelian form as the ultimate mereological atom [Aristotle, by Koslicki]
     Full Idea: Aristotle's discussion of the unmoved mover and of the soul confirms the suspicion that form, when it is not thought of as the object represented in a definition, plays the role of the ultimate mereological atom within his system.
     From: report of Aristotle (works [c.330 BCE]) by Kathrin Koslicki - The Structure of Objects 6.6
     A reaction: Aristotle is concerned with which things are 'divisible', and he cites these two examples as indivisible, but they may be too unusual to offer an actual theory of how Aristotle builds up wholes from atoms. He denies atoms in matter.
9. Objects / C. Structure of Objects / 2. Hylomorphism / d. Form as unifier
The 'form' is the recipe for building wholes of a particular kind [Aristotle, by Koslicki]
     Full Idea: Thus in Aristotle we may think of an object's formal components as a sort of recipe for how to build wholes of that particular kind.
     From: report of Aristotle (works [c.330 BCE]) by Kathrin Koslicki - The Structure of Objects 7.2.5
     A reaction: In the elusive business of pinning down what Aristotle means by the crucial idea of 'form', this analogy strikes me as being quite illuminating. It would fit DNA in living things, and the design of an artifact.
11. Knowledge Aims / A. Knowledge / 1. Knowledge
For Aristotle, knowledge is of causes, and is theoretical, practical or productive [Aristotle, by Code]
     Full Idea: Aristotle thinks that in general we have knowledge or understanding when we grasp causes, and he distinguishes three fundamental types of knowledge - theoretical, practical and productive.
     From: report of Aristotle (works [c.330 BCE]) by Alan D. Code - Aristotle
     A reaction: Productive knowledge we tend to label as 'knowing how'. The centrality of causes for knowledge would get Aristotle nowadays labelled as a 'naturalist'. It is hard to disagree with his three types, though they may overlap.
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
The notion of a priori truth is absent in Aristotle [Aristotle, by Politis]
     Full Idea: The notion of a priori truth is conspicuously absent in Aristotle.
     From: report of Aristotle (works [c.330 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 1.5
     A reaction: Cf. Idea 11240.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Aristotle is a rationalist, but reason is slowly acquired through perception and experience [Aristotle, by Frede,M]
     Full Idea: Aristotle is a rationalist …but reason for him is a disposition which we only acquire over time. Its acquisition is made possible primarily by perception and experience.
     From: report of Aristotle (works [c.330 BCE]) by Michael Frede - Aristotle's Rationalism p.173
     A reaction: I would describe this process as the gradual acquisition of the skill of objectivity, which needs the right knowledge and concepts to evaluate new experiences.
12. Knowledge Sources / E. Direct Knowledge / 2. Intuition
Aristotle wants to fit common intuitions, and therefore uses language as a guide [Aristotle, by Gill,ML]
     Full Idea: Since Aristotle generally prefers a metaphysical theory that accords with common intuitions, he frequently relies on facts about language to guide his metaphysical claims.
     From: report of Aristotle (works [c.330 BCE]) by Mary Louise Gill - Aristotle on Substance Ch.5
     A reaction: I approve of his procedure. I take intuition to be largely rational justifications too complex for us to enunciate fully, and language embodies folk intuitions in its concepts (especially if the concepts occur in many languages).
14. Science / B. Scientific Theories / 1. Scientific Theory
Plato says sciences are unified around Forms; Aristotle says they're unified around substance [Aristotle, by Moravcsik]
     Full Idea: Plato's unity of science principle states that all - legitimate - sciences are ultimately about the Forms. Aristotle's principle states that all sciences must be, ultimately, about substances, or aspects of substances.
     From: report of Aristotle (works [c.330 BCE], 1) by Julius Moravcsik - Aristotle on Adequate Explanations 1
14. Science / D. Explanation / 1. Explanation / a. Explanation
Aristotelian explanations are facts, while modern explanations depend on human conceptions [Aristotle, by Politis]
     Full Idea: For Aristotle things which explain (the explanantia) are facts, which should not be associated with the modern view that says explanations are dependent on how we conceive and describe the world (where causes are independent of us).
     From: report of Aristotle (works [c.330 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 2.1
     A reaction: There must be some room in modern thought for the Aristotelian view, if some sort of robust scientific realism is being maintained against the highly linguistic view of philosophy found in the twentieth century.
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
Aristotle's standard analysis of species and genus involves specifying things in terms of something more general [Aristotle, by Benardete,JA]
     Full Idea: The standard Aristotelian doctrine of species and genus in the theory of anything whatever involves specifying what the thing is in terms of something more general.
     From: report of Aristotle (works [c.330 BCE]) by José A. Benardete - Metaphysics: the logical approach Ch.10
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
Aristotle regularly says that essential properties explain other significant properties [Aristotle, by Kung]
     Full Idea: The view that essential properties are those in virtue of which other significant properties of the subjects under investigation can be explained is encountered repeatedly in Aristotle's work.
     From: report of Aristotle (works [c.330 BCE]) by Joan Kung - Aristotle on Essence and Explanation IV
     A reaction: What does 'significant' mean here? I take it that the significant properties are the ones which explain the role, function and powers of the object.
18. Thought / A. Modes of Thought / 5. Rationality / c. Animal rationality
Aristotle and the Stoics denied rationality to animals, while Platonists affirmed it [Aristotle, by Sorabji]
     Full Idea: Aristotle, and also the Stoics, denied rationality to animals. …The Platonists, the Pythagoreans, and some more independent Aristotelians, did grant reason and intellect to animals.
     From: report of Aristotle (works [c.330 BCE]) by Richard Sorabji - Rationality 'Denial'
     A reaction: This is not the same as affirming or denying their consciousness. The debate depends on how rationality is conceived.
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
Dedekind said numbers were abstracted from systems of objects, leaving only their position [Dedekind, by Dummett]
     Full Idea: By applying the operation of abstraction to a system of objects isomorphic to the natural numbers, Dedekind believed that we obtained the abstract system of natural numbers, each member having only properties consequent upon its position.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Michael Dummett - The Philosophy of Mathematics
     A reaction: Dummett is scornful of the abstractionism. He cites Benacerraf as a modern non-abstractionist follower of Dedekind's view. There seems to be a suspicion of circularity in it. How many objects will you abstract from to get seven?
We derive the natural numbers, by neglecting everything of a system except distinctness and order [Dedekind]
     Full Idea: If in an infinite system, set in order, we neglect the special character of the elements, simply retaining their distinguishability and their order-relations to one another, then the elements are the natural numbers, created by the human mind.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], VI.73)
     A reaction: [compressed] This is the classic abstractionist view of the origin of number, but with the added feature that the order is first imposed, so that ordinals remain after the abstraction. This, of course, sounds a bit circular, as well as subjective.
18. Thought / E. Abstraction / 8. Abstractionism Critique
Dedekind has a conception of abstraction which is not psychologistic [Dedekind, by Tait]
     Full Idea: Dedekind's conception is psychologistic only if that is the only way to understand the abstraction that is involved, which it is not.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by William W. Tait - Frege versus Cantor and Dedekind IV
     A reaction: This is a very important suggestion, implying that we can retain some notion of abstractionism, while jettisoning the hated subjective character of private psychologism, which seems to undermine truth and logic.
19. Language / E. Analyticity / 2. Analytic Truths
The notion of analytic truth is absent in Aristotle [Aristotle, by Politis]
     Full Idea: The notion of analytic truth is conspicuously absent in Aristotle.
     From: report of Aristotle (works [c.330 BCE]) by Vassilis Politis - Aristotle and the Metaphysics 1.5
     A reaction: Cf. Idea 11239.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
Aristotle never actually says that man is a rational animal [Aristotle, by Fogelin]
     Full Idea: To the best of my knowledge (and somewhat to my surprise), Aristotle never actually says that man is a rational animal; however, he all but says it.
     From: report of Aristotle (works [c.330 BCE]) by Robert Fogelin - Walking the Tightrope of Reason Ch.1
     A reaction: When I read this I thought that this database would prove Fogelin wrong, but it actually supports him, as I can't find it in Aristotle either. Descartes refers to it in Med.Two. In Idea 5133 Aristotle does say that man is a 'social being'. But 22586!
25. Social Practice / E. Policies / 4. Taxation
If we assess what people would buy in an imaginary insurance market, our taxes could copy it [Dworkin, by Kymlicka]
     Full Idea: If we can make sense of a hypothetical insurance market, and find a determinate answer to the question of what insurance people would buy in it, then we could use the tax system to duplicate the results.
     From: report of Ronald Dworkin (A Matter of Principle [1985]) by Will Kymlicka - Contemporary Political Philosophy (1st edn) 2.4.b
     A reaction: This is a nice alternative from Dworkin to Rawls's 'veil of ignorance' approach.
25. Social Practice / E. Policies / 5. Education / a. Aims of education
It is the mark of an educated mind to be able to entertain an idea without accepting it [Aristotle]
     Full Idea: It is the mark of an educated mind to be able to entertain an idea without accepting it.
     From: Aristotle (works [c.330 BCE])
     A reaction: The epigraph on a David Chalmers website. A wonderful remark, and it should be on the wall of every beginners' philosophy class. However, while it is in the spirit of Aristotle, it appears to be a misattribution with no ancient provenance.
25. Social Practice / E. Policies / 5. Education / b. Education principles
Aristotle said the educated were superior to the uneducated as the living are to the dead [Aristotle, by Diog. Laertius]
     Full Idea: Aristotle was asked how much educated men were superior to those uneducated; "As much," he said, "as the living are to the dead."
     From: report of Aristotle (works [c.330 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 05.1.11
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
There are potential infinities (never running out), but actual infinity is incoherent [Aristotle, by Friend]
     Full Idea: Aristotle developed his own distinction between potential infinity (never running out) and actual infinity (there being a collection of an actual infinite number of things, such as places, times, objects). He decided that actual infinity was incoherent.
     From: report of Aristotle (works [c.330 BCE]) by Michèle Friend - Introducing the Philosophy of Mathematics 1.3
     A reaction: Friend argues, plausibly, that this won't do, since potential infinity doesn't make much sense if there is not an actual infinity of things to supply the demand. It seems to just illustrate how boggling and uncongenial infinity was to Aristotle.
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / a. Greek matter
Aristotle's matter can become any other kind of matter [Aristotle, by Wiggins]
     Full Idea: Aristotle's conception of matter permits any kind of matter to become any other kind of matter.
     From: report of Aristotle (works [c.330 BCE]) by David Wiggins - Substance 4.11.2
     A reaction: This is obviously crucial background information when we read Aristotle on matter. Our 92+ elements, and fixed fundamental particles, gives a quite different picture. Aristotle would discuss form and matter quite differently now.
29. Religion / A. Polytheistic Religion / 2. Greek Polytheism
The concepts of gods arose from observing the soul, and the cosmos [Aristotle, by Sext.Empiricus]
     Full Idea: Aristotle said that the conception of gods arose among mankind from two originating causes, namely from events which concern the soul and from celestial phenomena.
     From: report of Aristotle (works [c.330 BCE], Frag 10) by Sextus Empiricus - Against the Physicists (two books) I.20
     A reaction: The cosmos suggests order, and possible creation. What do events of the soul suggest? It doesn't seem to be its non-physical nature, because Aristotle is more of a functionalist. Puzzling. (It says later that gods are like the soul).