Combining Texts

All the ideas for 'fragments/reports', 'New system of communication of substances' and 'Alfred Tarski: life and logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


19 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice is consistent with the other axioms of set theory [Feferman/Feferman]
     Full Idea: In 1938 Gödel proved that the Axiom of Choice is consistent with the other axioms of set theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: Hence people now standardly accept ZFC, rather than just ZF.
Axiom of Choice: a set exists which chooses just one element each of any set of sets [Feferman/Feferman]
     Full Idea: Zermelo's Axiom of Choice asserts that for any set of non-empty sets that (pairwise) have no elements in common, then there is a set that 'simultaneously chooses' exactly one element from each set. Note that this is an existential claim.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: The Axiom is now widely accepted, after much debate in the early years. Even critics of the Axiom turn out to be relying on it.
Platonist will accept the Axiom of Choice, but others want criteria of selection or definition [Feferman/Feferman]
     Full Idea: The Axiom of Choice seems clearly true from the Platonistic point of view, independently of how sets may be defined, but is rejected by those who think such existential claims must show how to pick out or define the object claimed to exist.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: The typical critics are likely to be intuitionists or formalists, who seek for both rigour and a plausible epistemology in our theory.
The Trichotomy Principle is equivalent to the Axiom of Choice [Feferman/Feferman]
     Full Idea: The Trichotomy Principle (any number is less, equal to, or greater than, another number) turned out to be equivalent to the Axiom of Choice.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: [He credits Sierpinski (1918) with this discovery]
Cantor's theories needed the Axiom of Choice, but it has led to great controversy [Feferman/Feferman]
     Full Idea: The Axiom of Choice is a pure existence statement, without defining conditions. It was necessary to provide a foundation for Cantor's theory of transfinite cardinals and ordinal numbers, but its nonconstructive character engendered heated controversy.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A structure is a 'model' when the axioms are true. So which of the structures are models? [Feferman/Feferman]
     Full Idea: A structure is said to be a 'model' of an axiom system if each of its axioms is true in the structure (e.g. Euclidean or non-Euclidean geometry). 'Model theory' concerns which structures are models of a given language and axiom system.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: This strikes me as the most interesting aspect of mathematical logic, since it concerns the ways in which syntactic proof-systems actually connect with reality. Tarski is the central theoretician here, and his theory of truth is the key.
Tarski and Vaught established the equivalence relations between first-order structures [Feferman/Feferman]
     Full Idea: In the late 1950s Tarski and Vaught defined and established basic properties of the relation of elementary equivalence between two structures, which holds when they make true exactly the same first-order sentences. This is fundamental to model theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: This is isomorphism, which clarifies what a model is by giving identity conditions between two models. Note that it is 'first-order', and presumably founded on classical logic.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim-Skolem says if the sentences are countable, so is the model [Feferman/Feferman]
     Full Idea: The Löwenheim-Skolem Theorem, the earliest in model theory, states that if a countable set of sentences in a first-order language has a model, then it has a countable model.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: There are 'upward' (sentences-to-model) and 'downward' (model-to-sentences) versions of the theory.
Löwenheim-Skolem Theorem, and Gödel's completeness of first-order logic, the earliest model theory [Feferman/Feferman]
     Full Idea: Before Tarski's work in the 1930s, the main results in model theory were the Löwenheim-Skolem Theorem, and Gödel's establishment in 1929 of the completeness of the axioms and rules for the classical first-order predicate (or quantificational) calculus.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
5. Theory of Logic / K. Features of Logics / 4. Completeness
If a sentence holds in every model of a theory, then it is logically derivable from the theory [Feferman/Feferman]
     Full Idea: Completeness is when, if a sentences holds in every model of a theory, then it is logically derivable from that theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
5. Theory of Logic / K. Features of Logics / 7. Decidability
'Recursion theory' concerns what can be solved by computing machines [Feferman/Feferman]
     Full Idea: 'Recursion theory' is the subject of what can and cannot be solved by computing machines
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Ch.9)
     A reaction: This because 'recursion' will grind out a result step-by-step, as long as the steps will 'halt' eventually.
Both Principia Mathematica and Peano Arithmetic are undecidable [Feferman/Feferman]
     Full Idea: In 1936 Church showed that Principia Mathematica is undecidable if it is ω-consistent, and a year later Rosser showed that Peano Arithmetic is undecidable, and any consistent extension of it.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int IV)
8. Modes of Existence / C. Powers and Dispositions / 4. Powers as Essence
My formal unifying atoms are substantial forms, which are forces like appetites [Leibniz]
     Full Idea: To find real entities I had recourse to a unified formal atom. Hence I rehabilitated the substantial forms in a way to render them intelligible. I found that their nature consists in force, from which follows something analogous to sensation and appetite.
     From: Gottfried Leibniz (New system of communication of substances [1695], p.139)
     A reaction: [several lines are here compressed] This passage sums up the key to Leibniz's essentialism, which I take to be a connection between Aristotelian form and the physicists' notion of force. This gives us a modern version of Aristotelianism for science.
I call Aristotle's entelechies 'primitive forces', which originate activity [Leibniz]
     Full Idea: Forms establish the true general principles of nature. Aristotle calls them 'first entelechies'; I call them, perhaps more intelligibly, 'primitive forces', which contain not only act or the completion of possibility, but also an original activity.
     From: Gottfried Leibniz (New system of communication of substances [1695], p.139)
     A reaction: As in Idea 13168, I take Leibniz to be unifying Aristotle with modern science, and offering an active view of nature in tune with modern scientific essentialism. Laws arise from primitive force, and are not imposed from without.
9. Objects / A. Existence of Objects / 5. Simples
The analysis of things leads to atoms of substance, which found both composition and action [Leibniz]
     Full Idea: There are only atoms of substance, that is, real unities absolutely destitute of parts, which are the source of actions, the first absolute principles of the composition of things, and, as it were, the final elements in the analysis of substantial things.
     From: Gottfried Leibniz (New system of communication of substances [1695], p.142)
     A reaction: I like this because it addresses the pure issue of the identity of an individuated object, but also links it with an active view of nature, and not some mere inventory of objects.
9. Objects / B. Unity of Objects / 2. Substance / c. Types of substance
Substance must necessarily involve progress and change [Leibniz]
     Full Idea: The nature of substance necessarily requires and essentially involves progress or change, without which it would not have the force to act.
     From: Gottfried Leibniz (New system of communication of substances [1695], p.144)
     A reaction: Bravo. Most metaphysical musings regarding 'substance' seem entirely wrapped up in the problem of pure identity, and forget about the role of objects in activity and change.
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
     Full Idea: Archelaus was the first person to say that the universe is boundless.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 02.Ar.3
27. Natural Reality / A. Classical Physics / 1. Mechanics / c. Forces
We need the metaphysical notion of force to explain mechanics, and not just extended mass [Leibniz]
     Full Idea: Considering 'extended mass' alone was not sufficient to explain the principles of mechanics and the laws of nature, but it is necessary to make use of the notion of 'force', which is very intelligible, despite belonging in the domain of metaphysics.
     From: Gottfried Leibniz (New system of communication of substances [1695], p.139)
     A reaction: We may find it surprising that force is a metaphysical concept, but that is worth pondering. It is a mysterious notion within physics. Notice the emphasis on what explains, and what is intelligible. He sees Descartes's system as too passive.
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]
     Full Idea: Archelaus wrote that life on Earth began in a primeval slime.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Malcolm Schofield - Archelaus
     A reaction: This sounds like a fairly clearcut assertion of the production of life by evolution. Darwin's contribution was to propose the mechanism for achieving it. We should honour the name of Archelaus for this idea.