Combining Texts

All the ideas for 'fragments/reports', 'The Concept of Truth for Formalized Languages' and 'Introduction to the Philosophy of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


59 ideas

3. Truth / A. Truth Problems / 2. Defining Truth
Tarski proved that truth cannot be defined from within a given theory [Tarski, by Halbach]
     Full Idea: Tarski's Theorem states that under fairly generally applicable conditions, the assumption that there is a definition of truth within a given theory for the language of that same theory leads to a contradiction.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 1
     A reaction: That might leave room for a definition outside the given theory. I take the main motivation for the axiomatic approach to be a desire to get a theory of truth within the given theory, where Tarski's Theorem says traditional approaches are just wrong.
Tarski proved that any reasonably expressive language suffers from the liar paradox [Tarski, by Horsten]
     Full Idea: Tarski's Theorem on the undefinability of truth says in a language sufficiently rich to talk about itself (which Gödel proved possible, via coding) the liar paradox can be carried out.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Leon Horsten - The Tarskian Turn 02.2
     A reaction: The point is that truth is formally indefinable if it leads inescapably to contradiction, which the liar paradox does. This theorem is the motivation for all modern attempts to give a rigorous account of truth.
'True sentence' has no use consistent with logic and ordinary language, so definition seems hopeless [Tarski]
     Full Idea: The possibility of a consistent use of 'true sentence' which is in harmony with the laws of logic and the spirit of everyday language seems to be very questionable, so the same doubt attaches to the possibility of constructing a correct definition.
     From: Alfred Tarski (The Concept of Truth for Formalized Languages [1933], §1)
     A reaction: This is often cited as Tarski having conclusively proved that 'true' cannot be defined from within a language, but his language here is much more circumspect. Modern critics say the claim depends entirely on classical logic.
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
Tarski's Theorem renders any precise version of correspondence impossible [Tarski, by Halbach]
     Full Idea: Tarski's Theorem applies to any sufficient precise version of the correspondence theory of truth, and all the other traditional theories of truth.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 1
     A reaction: This is the key reason why modern thinkers have largely dropped talk of the correspondence theory. See Idea 16295.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Tarskian semantics says that a sentence is true iff it is satisfied by every sequence [Tarski, by Hossack]
     Full Idea: Tarskian semantics says that a sentence is true iff it is satisfied by every sequence, where a sequence is a set-theoretic individual, a set of ordered pairs each with a natural number as its first element and an object from the domain for its second.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Keith Hossack - Plurals and Complexes 3
Tarski gave up on the essence of truth, and asked how truth is used, or how it functions [Tarski, by Horsten]
     Full Idea: Tarski emancipated truth theory from traditional philosophy, by no longer posing Pilate's question (what is truth? or what is the essence of truth?) but instead 'how is truth used?', 'how does truth function?' and 'how can its functioning be described?'.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Leon Horsten - The Tarskian Turn 02.2
     A reaction: Horsten, later in the book, does not give up on the essence of truth, and modern theorists are trying to get back to that question by following Tarski's formal route. Modern analytic philosophy at its best, it seems to me.
Tarski did not just aim at a definition; he also offered an adequacy criterion for any truth definition [Tarski, by Halbach]
     Full Idea: Tarski did not settle for a definition of truth, taking its adequacy for granted. Rather he proposed an adequacy criterion for evaluating the adequacy of definitions of truth. The criterion is his famous Convention T.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 3
     A reaction: Convention T famously says the sentence is true if and only if a description of the sentence is equivalent to affirming the sentence. 'Snow is white' iff snow is white.
Tarski enumerates cases of truth, so it can't be applied to new words or languages [Davidson on Tarski]
     Full Idea: Tarski does not tell us how to apply his concept of truth to a new case, whether the new case is a new language or a word newly added to a language. This is because enumerating cases gives no clue for the next or general case.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Donald Davidson - Truth and Predication 1
     A reaction: His account has been compared to a telephone directory. We aim to understand the essence of anything, so that we can fully know it, and explain and predict how it will behave. Either truth is primitive, or I demand to know its essence.
Tarski define truths by giving the extension of the predicate, rather than the meaning [Davidson on Tarski]
     Full Idea: Tarski defined the class of true sentences by giving the extension of the truth predicate, but he did not give the meaning.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Donald Davidson - Truth and Predication 1
     A reaction: This is analogous to giving an account of the predicate 'red' as the set of red objects. Since I regard that as a hopeless definition of 'red', I am inclined to think the same of Tarski's account of truth. It works in the logic, but so what?
Tarski made truth relative, by only defining truth within some given artificial language [Tarski, by O'Grady]
     Full Idea: Tarski's account doesn't hold for natural languages. The general notion of truth is replaced by "true-in-L", where L is a formal language. Hence truth is relativized to each artificial language.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Paul O'Grady - Relativism Ch.2
     A reaction: This is a pretty good indication that Tarski's theory is NOT a correspondence theory, even if its structure may sometimes give that impression.
Tarski has to avoid stating how truths relate to states of affairs [Kirkham on Tarski]
     Full Idea: Tarski has to define truths so as not to make explicit the relation between a true sentence and an obtaining state of affairs. ...He has to list each sentence separately, and simply assign it a state of affairs.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Richard L. Kirkham - Theories of Truth: a Critical Introduction 5.8
     A reaction: He has to avoid semantic concepts like 'reference', because he wants a physicalist theory, according to Kirkham. Thus the hot interest in theories of reference in the 1970s/80s. And also attempts to give a physicalist account of meaning.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Truth only applies to closed formulas, but we need satisfaction of open formulas to define it [Burgess on Tarski]
     Full Idea: In Tarski's theory of truth, although the notion of truth is applicable only to closed formulas, to define it we must define a more general notion of satisfaction applicable to open formulas.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by John P. Burgess - Philosophical Logic 1.8
     A reaction: This is a helpful pointer to what is going on in the Tarski definition. It culminates in the 'satisfaction of all sequences', which presumable delivers the required closed formula.
Tarski uses sentential functions; truly assigning the objects to variables is what satisfies them [Tarski, by Rumfitt]
     Full Idea: Tarski invoked the notion of a sentential function, where components are replaced by appropriate variables. A function is then satisfied by assigning objects to variables. An assignment satisfies if the function is true of the things assigned.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Ian Rumfitt - The Boundary Stones of Thought 3.2
     A reaction: [very compressed] This use of sentential functions, rather than sentences, looks like the key to Tarski's definition of truth.
We can define the truth predicate using 'true of' (satisfaction) for variables and some objects [Tarski, by Horsten]
     Full Idea: The truth predicate, says Tarski, should be defined in terms of the more primitive satisfaction relation: the relation of being 'true of'. The fundamental notion is a formula (containing the free variables) being true of a sequence of objects as values.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Leon Horsten - The Tarskian Turn 06.3
For physicalism, reduce truth to satisfaction, then define satisfaction as physical-plus-logic [Tarski, by Kirkham]
     Full Idea: Tarski, a physicalist, reduced semantics to physical and/or logicomathematical concepts. He defined all semantic concepts, save satisfaction, in terms of truth. Then truth is defined in terms of satisfaction, and satisfaction is given non-semantically.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Richard L. Kirkham - Theories of Truth: a Critical Introduction 5.1
     A reaction: The term 'logicomathematical' is intended to cover set theory. Kirkham says you can remove these restrictions from Tarski's theory, and the result is a version of the correspondence theory.
Insight: don't use truth, use a property which can be compositional in complex quantified sentence [Tarski, by Kirkham]
     Full Idea: Tarski's great insight is find another property, since open sentences are not truth. It must be had by open and genuine sentences. Clauses having it must generate it for the whole sentence. Truth can be defined for sentences by using it.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Richard L. Kirkham - Theories of Truth: a Critical Introduction 5.4
     A reaction: The proposed property is 'satisfaction', which can (unlike truth) be a feature open sentences (such as 'x is green', which is satisfied by x='grass'),
Tarski gave axioms for satisfaction, then derived its explicit definition, which led to defining truth [Tarski, by Davidson]
     Full Idea: Tarski turned his axiomatic characterisation of satisfaction into an explicit definition of the satisfaction-predicate using some fancy set theoretical apparatus, and this in turn leads to the explicit definition of the truth predicate.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Donald Davidson - Truth and Predication 7
3. Truth / F. Semantic Truth / 2. Semantic Truth
Tarski made truth respectable, by proving that it could be defined [Tarski, by Halbach]
     Full Idea: Tarski's proof of the definability of truth allowed him to establish truth as a respectable notion by his standards.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 3
Tarski defined truth for particular languages, but didn't define it across languages [Davidson on Tarski]
     Full Idea: Tarski defined various predicates of the form 's is true in L', each applicable to a single language, but he failed to define a predicate of the form 's is true in L' for variable 'L'.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Donald Davidson - Truth and Predication 1
     A reaction: You might say that no one defines 'tree' to be just 'in English', but we might define 'multiplies' to be in Peano Arithmetic. This indicates the limited and formal nature of what Tarski was trying to achieve.
Tarski didn't capture the notion of an adequate truth definition, as Convention T won't prove non-contradiction [Halbach on Tarski]
     Full Idea: Every really adequate theory of truth should also prove the law of non-contradiction. Therefore Tarski's notion of adequacy in Convention T fails to capture the intuitive notion of adequacy he is after.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 3
     A reaction: Tarski points out this weakness, in a passage quoted by Halbach. This obviously raises the question of what truth theories should prove, and this is explored by Halbach. If they start to prove arithmetic, we get nervous. Non-contradiction and x-middle?
Tarski says that his semantic theory of truth is completely neutral about all metaphysics [Tarski, by Haack]
     Full Idea: Tarski says "we may remain naïve realists or idealists, empiricists or metaphysicians… The semantic conception is completely neutral toward all these issues."
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Susan Haack - Philosophy of Logics 7.5
Physicalists should explain reference nonsemantically, rather than getting rid of it [Tarski, by Field,H]
     Full Idea: Tarski work was to persuade physicalist that eliminating semantics was on the wrong track, and that we should explicate notions in the theory of reference nonsemantically rather than simply get rid of them.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Hartry Field - Tarski's Theory of Truth §3
A physicalist account must add primitive reference to Tarski's theory [Field,H on Tarski]
     Full Idea: We need to add theories of primitive reference to Tarski's account if we are to establish the notion of truth as a physicalistically acceptable notion.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Hartry Field - Tarski's Theory of Truth §4
     A reaction: This is the main point of Field's paper, and sounds very plausible to me. There is something major missing from Tarski, and at some point there needs to be a 'primitive' notion of thought and language making contact with the world, as it can't be proved.
Tarski had a theory of truth, and a theory of theories of truth [Tarski, by Read]
     Full Idea: Besides a theory of truth of his own, Tarski developed a theory of theories of truth.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Stephen Read - Thinking About Logic Ch.1
     A reaction: The famous snow biconditional is the latter, and the recursive account based on satisfaction is the former.
Tarski's 'truth' is a precise relation between the language and its semantics [Tarski, by Walicki]
     Full Idea: Tarski's analysis of the concept of 'truth' ...is given a precise treatment as a particular relation between syntax (language) and semantics (the world).
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Michal Walicki - Introduction to Mathematical Logic History E.1
     A reaction: My problem is that the concept of truth seems to apply to animal minds, which are capable of making right or wrong judgements, and of realising their errors. Tarski didn't make universal claims for his account.
Tarskian truth neglects the atomic sentences [Mulligan/Simons/Smith on Tarski]
     Full Idea: The Tarskian account of truth neglects the atomic sentences.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Mulligan/Simons/Smith - Truth-makers §1
     A reaction: Yes! The whole Tarskian edifice is built on a foundation which it is taboo even to mention. If truth is just the assignment of 'T' and 'F', that isn't even the beginnings of a theory of 'truth'.
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
Tarski's had the first axiomatic theory of truth that was minimally adequate [Tarski, by Horsten]
     Full Idea: Tarski's work is the earliest axiomatic theory of truth that meets minimal adequacy conditions.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Leon Horsten - The Tarskian Turn 01.1
     A reaction: This shows a way in which Tarski gave a new direction to the study of truth. Subsequent theories have been 'stronger'.
Tarski defined truth, but an axiomatisation can be extracted from his inductive clauses [Tarski, by Halbach]
     Full Idea: Tarski preferred a definition of truth, but from that an axiomatisation can be extracted. His induction clauses can be turned into axioms. Hence he opened the way to axiomatic theories of truth.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 3
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Rejecting double negation elimination undermines reductio proofs [Colyvan]
     Full Idea: The intuitionist rejection of double negation elimination undermines the important reductio ad absurdum proof in classical mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
Showing a disproof is impossible is not a proof, so don't eliminate double negation [Colyvan]
     Full Idea: In intuitionist logic double negation elimination fails. After all, proving that there is no proof that there can't be a proof of S is not the same thing as having a proof of S.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: I do like people like Colyvan who explain things clearly. All of this difficult stuff is understandable, if only someone makes the effort to explain it properly.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle says P or not-P; bivalence says P is either true or false [Colyvan]
     Full Idea: The law of excluded middle (for every proposition P, either P or not-P) must be carefully distinguished from its semantic counterpart bivalence, that every proposition is either true or false.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: So excluded middle makes no reference to the actual truth or falsity of P. It merely says P excludes not-P, and vice versa.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is invariant under arbitrary permutations, so it seems to be a logical term [Tarski, by McGee]
     Full Idea: Tarski showed that the only binary relations invariant under arbitrary permutations are the universal relation, the empty relation, identity and non-identity, thus giving us a reason to include '=' among the logical terms.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Vann McGee - Logical Consequence 6
     A reaction: Tarski was looking for a criterion to distinguish logical from non-logical terms, since his account of logical validity depended on it. This idea lies behind whether a logic is or is not specified to be 'with identity' (i.e. using '=').
5. Theory of Logic / F. Referring in Logic / 1. Naming / c. Names as referential
A name denotes an object if the object satisfies a particular sentential function [Tarski]
     Full Idea: To say that the name x denotes a given object a is the same as to stipulate that the object a ... satisfies a sentential function of a particular type.
     From: Alfred Tarski (The Concept of Truth for Formalized Languages [1933], p.194)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Tarski built a compositional semantics for predicate logic, from dependent satisfactions [Tarski, by McGee]
     Full Idea: Tarski discovered how to give a compositional semantics for predicate calculus, defining truth in terms of satisfaction, and showing how satisfaction for a complicated formula depends on satisfaction of the simple subformulas.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Vann McGee - Logical Consequence 4
     A reaction: The problem was that the subformulas may contain free variables, and thus not be sentences with truth values. 'Satisfaction' can handle this, where 'truth' cannot (I think).
Tarksi invented the first semantics for predicate logic, using this conception of truth [Tarski, by Kirkham]
     Full Idea: Tarski invented a formal semantics for quantified predicate logic, the logic of reasoning about mathematics. The heart of this great accomplishment is his theory of truth. It has been called semantic 'theory' of truth, but Tarski preferred 'conception'.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Richard L. Kirkham - Theories of Truth: a Critical Introduction 5.1
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
The object language/ metalanguage distinction is the basis of model theory [Tarski, by Halbach]
     Full Idea: Tarski's distinction between object and metalanguage forms the basis of model theory.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 11
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim proved his result for a first-order sentence, and Skolem generalised it [Colyvan]
     Full Idea: Löwenheim proved that if a first-order sentence has a model at all, it has a countable model. ...Skolem generalised this result to systems of first-order sentences.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are 'categorical' if all of their models are isomorphic [Colyvan]
     Full Idea: A set of axioms is said to be 'categorical' if all models of the axioms in question are isomorphic.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
     A reaction: The best example is the Peano Axioms, which are 'true up to isomorphism'. Set theory axioms are only 'quasi-isomorphic'.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
Tarski avoids the Liar Paradox, because truth cannot be asserted within the object language [Tarski, by Fisher]
     Full Idea: In Tarski's account of truth, self-reference (as found in the Liar Paradox) is prevented because the truth predicate for any given object language is never a part of that object language, and so a sentence can never predicate truth of itself.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Jennifer Fisher - On the Philosophy of Logic 03.I
     A reaction: Thus we solve the Liar Paradox by ruling that 'you are not allowed to say that'. Hm. The slightly odd result is that in any conversation about whether p is true, we end up using (logically speaking) two different languages simultaneously. Hm.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinal numbers represent order relations [Colyvan]
     Full Idea: Ordinal numbers represent order relations.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.2.3 n17)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Intuitionists only accept a few safe infinities [Colyvan]
     Full Idea: For intuitionists, all but the smallest, most well-behaved infinities are rejected.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: The intuitionist idea is to only accept what can be clearly constructed or proved.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Infinitesimals were sometimes zero, and sometimes close to zero [Colyvan]
     Full Idea: The problem with infinitesimals is that in some places they behaved like real numbers close to zero but in other places they behaved like zero.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.2)
     A reaction: Colyvan gives an example, of differentiating a polynomial.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Reducing real numbers to rationals suggested arithmetic as the foundation of maths [Colyvan]
     Full Idea: Given Dedekind's reduction of real numbers to sequences of rational numbers, and other known reductions in mathematics, it was tempting to see basic arithmetic as the foundation of mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.1)
     A reaction: The reduction is the famous Dedekind 'cut'. Nowadays theorists seem to be more abstract (Category Theory, for example) instead of reductionist.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Transfinite induction moves from all cases, up to the limit ordinal [Colyvan]
     Full Idea: Transfinite inductions are inductive proofs that include an extra step to show that if the statement holds for all cases less than some limit ordinal, the statement also holds for the limit ordinal.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1 n11)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical proofs are using set theory, but without saying so [Colyvan]
     Full Idea: Most mathematical proofs, outside of set theory, do not explicitly state the set theory being employed.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.1)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism say only 'up to isomorphism' matters because that is all there is to it [Colyvan]
     Full Idea: Structuralism is able to explain why mathematicians are typically only interested in describing the objects they study up to isomorphism - for that is all there is to describe.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If 'in re' structures relies on the world, does the world contain rich enough structures? [Colyvan]
     Full Idea: In re structuralism does not posit anything other than the kinds of structures that are in fact found in the world. ...The problem is that the world may not provide rich enough structures for the mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
     A reaction: You can perceive a repeating pattern in the world, without any interest in how far the repetitions extend.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Tarski's theory of truth shifted the approach away from syntax, to set theory and semantics [Feferman/Feferman on Tarski]
     Full Idea: Tarski's theory of truth has been most influential in eventually creating a shift from the entirely syntactic way of doing things in metamathematics (promoted by Hilbert in the 1920s, in his theory of proofs), towards a set-theoretical, semantic approach.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Feferman / Feferman - Alfred Tarski: life and logic Int III
14. Science / C. Induction / 6. Bayes's Theorem
Probability supports Bayesianism better as degrees of belief than as ratios of frequencies [Colyvan]
     Full Idea: Those who see probabilities as ratios of frequencies can't use Bayes's Theorem if there is no objective prior probability. Those who accept prior probabilities tend to opt for a subjectivist account, where probabilities are degrees of belief.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.8)
     A reaction: [compressed]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Mathematics can reveal structural similarities in diverse systems [Colyvan]
     Full Idea: Mathematics can demonstrate structural similarities between systems (e.g. missing population periods and the gaps in the rings of Saturn).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
     A reaction: [Colyvan expounds the details of his two examples] It is these sorts of results that get people enthusiastic about the mathematics embedded in nature. A misunderstanding, I think.
14. Science / D. Explanation / 2. Types of Explanation / f. Necessity in explanations
Mathematics can show why some surprising events have to occur [Colyvan]
     Full Idea: Mathematics can show that under a broad range of conditions, something initially surprising must occur (e.g. the hexagonal structure of honeycomb).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
14. Science / D. Explanation / 2. Types of Explanation / m. Explanation by proof
Proof by cases (by 'exhaustion') is said to be unexplanatory [Colyvan]
     Full Idea: Another style of proof often cited as unexplanatory are brute-force methods such as proof by cases (or proof by exhaustion).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
Reductio proofs do not seem to be very explanatory [Colyvan]
     Full Idea: One kind of proof that is thought to be unexplanatory is the 'reductio' proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: Presumably you generate a contradiction, but are given no indication of why the contradiction has arisen? Tracking back might reveal the source of the problem? Colyvan thinks reductio can be explanatory.
If inductive proofs hold because of the structure of natural numbers, they may explain theorems [Colyvan]
     Full Idea: It might be argued that any proof by induction is revealing the explanation of the theorem, namely, that it holds by virtue of the structure of the natural numbers.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: This is because induction characterises the natural numbers, in the Peano Axioms.
Can a proof that no one understands (of the four-colour theorem) really be a proof? [Colyvan]
     Full Idea: The proof of the four-colour theorem raises questions about whether a 'proof' that no one understands is a proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.6)
     A reaction: The point is that the theorem (that you can colour countries on a map with just four colours) was proved with the help of a computer.
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Mathematical generalisation is by extending a system, or by abstracting away from it [Colyvan]
     Full Idea: One type of generalisation in mathematics extends a system to go beyond what is was originally set up for; another kind involves abstracting away from some details in order to capture similarities between different systems.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.2)
21. Aesthetics / A. Aesthetic Experience / 3. Taste
Taste is the capacity to judge an object or representation which is thought to be beautiful [Tarski, by Schellekens]
     Full Idea: Taste is the faculty for judging an object or a kind of representation through a satisfaction or a dissatisfaction, ...where the object of such a satisfaction is called beautiful.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Elizabeth Schellekens - Immanuel Kant (aesthetics) 1
     A reaction: We usually avoid the word 'faculty' nowadays, because it implies a specific mechanism, but 'capacity' will do. Kant is said to focus specifically on beauty, whereas modern aestheticians have a broader view of the type of subject matter.
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
     Full Idea: Archelaus was the first person to say that the universe is boundless.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 02.Ar.3
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]
     Full Idea: Archelaus wrote that life on Earth began in a primeval slime.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Malcolm Schofield - Archelaus
     A reaction: This sounds like a fairly clearcut assertion of the production of life by evolution. Darwin's contribution was to propose the mechanism for achieving it. We should honour the name of Archelaus for this idea.