Combining Philosophers

All the ideas for Timon, Herbert B. Enderton and Kenneth Kunen

expand these ideas     |    start again     |     specify just one area for these philosophers


51 ideas

4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Until the 1960s the only semantics was truth-tables [Enderton]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
'F(x)' is the unique value which F assumes for a value of x [Enderton]
'fld R' indicates the 'field' of all objects in the relation [Enderton]
'ran R' indicates the 'range' of objects being related to [Enderton]
'dom R' indicates the 'domain' of objects having a relation [Enderton]
We write F:A→B to indicate that A maps into B (the output of F on A is in B) [Enderton]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
∈ says the whole set is in the other; ⊆ says the members of the subset are in the other [Enderton]
A 'linear or total ordering' must be transitive and satisfy trichotomy [Enderton]
The 'ordered pair' <x,y> is defined to be {{x}, {x,y}} [Enderton]
The 'powerset' of a set is all the subsets of a given set [Enderton]
Two sets are 'disjoint' iff their intersection is empty [Enderton]
A relation is 'symmetric' on a set if every ordered pair has the relation in both directions [Enderton]
A relation is 'transitive' if it can be carried over from two ordered pairs to a third [Enderton]
A 'relation' is a set of ordered pairs [Enderton]
A 'domain' of a relation is the set of members of ordered pairs in the relation [Enderton]
A function 'maps A into B' if the relating things are set A, and the things related to are all in B [Enderton]
A function 'maps A onto B' if the relating things are set A, and the things related to are set B [Enderton]
A relation is 'reflexive' on a set if every member bears the relation to itself [Enderton]
A 'function' is a relation in which each object is related to just one other object [Enderton]
A relation satisfies 'trichotomy' if all pairs are either relations, or contain identical objects [Enderton]
A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second [Enderton]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Note that {Φ} =/= Φ, because Φ ∈ {Φ} but Φ ∉ Φ [Enderton]
The empty set may look pointless, but many sets can be constructed from it [Enderton]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
The singleton is defined using the pairing axiom (as {x,x}) [Enderton]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
We 'partition' a set into distinct subsets, according to each relation on its objects [Enderton]
An 'equivalence relation' is a reflexive, symmetric and transitive binary relation [Enderton]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Fraenkel added Replacement, to give a theory of ordinal numbers [Enderton]
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can only define functions if Choice tells us which items are involved [Enderton]
Choice: ∀A ∃R (R well-orders A) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Inference not from content, but from the fact that it was said, is 'conversational implicature' [Enderton]
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Validity is either semantic (what preserves truth), or proof-theoretic (following procedures) [Enderton]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth or tautology is a logical consequence of the empty set [Enderton]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A truth assignment to the components of a wff 'satisfy' it if the wff is then True [Enderton]
5. Theory of Logic / K. Features of Logics / 3. Soundness
A proof theory is 'sound' if its valid inferences entail semantic validity [Enderton]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A proof theory is 'complete' if semantically valid inferences entail proof-theoretic validity [Enderton]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Proof in finite subsets is sufficient for proof in an infinite set [Enderton]
5. Theory of Logic / K. Features of Logics / 7. Decidability
Expressions are 'decidable' if inclusion in them (or not) can be proved [Enderton]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
For a reasonable language, the set of valid wff's can always be enumerated [Enderton]
8. Modes of Existence / A. Relations / 4. Formal Relations / b. Equivalence relation
An 'equivalence' relation is one which is reflexive, symmetric and transitive [Kunen]
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
Sentences with 'if' are only conditionals if they can read as A-implies-B [Enderton]
13. Knowledge Criteria / E. Relativism / 3. Subjectivism
That honey is sweet I do not affirm, but I agree that it appears so [Timon]