Combining Philosophers

All the ideas for Thales, Mark Colyvan and Crispin Wright

expand these ideas     |    start again     |     specify just one area for these philosophers


64 ideas

1. Philosophy / B. History of Ideas / 2. Ancient Thought
Thales was the first western thinker to believe the arché was intelligible [Roochnik on Thales]
1. Philosophy / C. History of Philosophy / 1. History of Philosophy
We can only learn from philosophers of the past if we accept the risk of major misrepresentation [Wright,C]
2. Reason / C. Styles of Reason / 1. Dialectic
The best way to understand a philosophical idea is to defend it [Wright,C]
2. Reason / D. Definition / 7. Contextual Definition
The attempt to define numbers by contextual definition has been revived [Wright,C, by Fine,K]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Rejecting double negation elimination undermines reductio proofs [Colyvan]
Showing a disproof is impossible is not a proof, so don't eliminate double negation [Colyvan]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle says P or not-P; bivalence says P is either true or false [Colyvan]
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
An expression refers if it is a singular term in some true sentences [Wright,C, by Dummett]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim proved his result for a first-order sentence, and Skolem generalised it [Colyvan]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are 'categorical' if all of their models are isomorphic [Colyvan]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Number theory aims at the essence of natural numbers, giving their nature, and the epistemology [Wright,C]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
One could grasp numbers, and name sizes with them, without grasping ordering [Wright,C]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinal numbers represent order relations [Colyvan]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / d. Counting via concepts
Instances of a non-sortal concept can only be counted relative to a sortal concept [Wright,C]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Intuitionists only accept a few safe infinities [Colyvan]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Infinitesimals were sometimes zero, and sometimes close to zero [Colyvan]
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Reducing real numbers to rationals suggested arithmetic as the foundation of maths [Colyvan]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Wright thinks Hume's Principle is more fundamental to cardinals than the Peano Axioms are [Wright,C, by Heck]
There are five Peano axioms, which can be expressed informally [Wright,C]
Number truths are said to be the consequence of PA - but it needs semantic consequence [Wright,C]
What facts underpin the truths of the Peano axioms? [Wright,C]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Transfinite induction moves from all cases, up to the limit ordinal [Colyvan]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Sameness of number is fundamental, not counting, despite children learning that first [Wright,C]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
We derive Hume's Law from Law V, then discard the latter in deriving arithmetic [Wright,C, by Fine,K]
Frege has a good system if his 'number principle' replaces his basic law V [Wright,C, by Friend]
Wright says Hume's Principle is analytic of cardinal numbers, like a definition [Wright,C, by Heck]
It is 1-1 correlation of concepts, and not progression, which distinguishes natural number [Wright,C]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
If numbers are extensions, Frege must first solve the Caesar problem for extensions [Wright,C]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical proofs are using set theory, but without saying so [Colyvan]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism say only 'up to isomorphism' matters because that is all there is to it [Colyvan]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If 'in re' structures relies on the world, does the world contain rich enough structures? [Colyvan]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Number platonism says that natural number is a sortal concept [Wright,C]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
We can't use empiricism to dismiss numbers, if numbers are our main evidence against empiricism [Wright,C]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Treating numbers adjectivally is treating them as quantifiers [Wright,C]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
The Peano Axioms, and infinity of cardinal numbers, are logical consequences of how we explain cardinals [Wright,C]
The aim is to follow Frege's strategy to derive the Peano Axioms, but without invoking classes [Wright,C]
Wright has revived Frege's discredited logicism [Wright,C, by Benardete,JA]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seemed to fail by Russell's paradox, Gödel's theorems, and non-logical axioms [Wright,C]
The standard objections are Russell's Paradox, non-logical axioms, and Gödel's theorems [Wright,C]
7. Existence / A. Nature of Existence / 2. Types of Existence
The idea that 'exist' has multiple senses is not coherent [Wright,C]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / b. Commitment of quantifiers
Singular terms in true sentences must refer to objects; there is no further question about their existence [Wright,C]
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
Contextually defined abstract terms genuinely refer to objects [Wright,C, by Dummett]
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Sortal concepts cannot require that things don't survive their loss, because of phase sortals [Wright,C]
10. Modality / A. Necessity / 6. Logical Necessity
Logical necessity involves a decision about usage, and is non-realist and non-cognitive [Wright,C, by McFetridge]
10. Modality / C. Sources of Modality / 5. Modality from Actuality
Nothing is stronger than necessity, which rules everything [Thales, by Diog. Laertius]
14. Science / C. Induction / 6. Bayes's Theorem
Probability supports Bayesianism better as degrees of belief than as ratios of frequencies [Colyvan]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Mathematics can reveal structural similarities in diverse systems [Colyvan]
14. Science / D. Explanation / 2. Types of Explanation / f. Necessity in explanations
Mathematics can show why some surprising events have to occur [Colyvan]
14. Science / D. Explanation / 2. Types of Explanation / m. Explanation by proof
Proof by cases (by 'exhaustion') is said to be unexplanatory [Colyvan]
Reductio proofs do not seem to be very explanatory [Colyvan]
If inductive proofs hold because of the structure of natural numbers, they may explain theorems [Colyvan]
Can a proof that no one understands (of the four-colour theorem) really be a proof? [Colyvan]
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Mathematical generalisation is by extending a system, or by abstracting away from it [Colyvan]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
A concept is only a sortal if it gives genuine identity [Wright,C]
'Sortal' concepts show kinds, use indefinite articles, and require grasping identities [Wright,C]
18. Thought / D. Concepts / 4. Structure of Concepts / b. Analysis of concepts
Entities fall under a sortal concept if they can be used to explain identity statements concerning them [Wright,C]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
If we can establish directions from lines and parallelism, we were already committed to directions [Wright,C]
19. Language / A. Nature of Meaning / 5. Meaning as Verification
A milder claim is that understanding requires some evidence of that understanding [Wright,C]
19. Language / A. Nature of Meaning / 7. Meaning Holism / b. Language holism
Holism cannot give a coherent account of scientific methodology [Wright,C, by Miller,A]
19. Language / B. Reference / 1. Reference theories
If apparent reference can mislead, then so can apparent lack of reference [Wright,C]
19. Language / C. Assigning Meanings / 3. Predicates
We can accept Frege's idea of object without assuming that predicates have a reference [Wright,C]
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / c. Ultimate substances
Thales said water is the first principle, perhaps from observing that food is moist [Thales, by Aristotle]
27. Natural Reality / A. Classical Physics / 1. Mechanics / a. Explaining movement
Thales must have thought soul causes movement, since he thought magnets have soul [Thales, by Aristotle]
29. Religion / A. Polytheistic Religion / 2. Greek Polytheism
Thales said the gods know our wrong thoughts as well as our evil actions [Thales, by Diog. Laertius]