Combining Philosophers

All the ideas for Thales, Keith Hossack and Brian Clegg

expand these ideas     |    start again     |     specify just one area for these philosophers


54 ideas

1. Philosophy / B. History of Ideas / 2. Ancient Thought
Thales was the first western thinker to believe the arché was intelligible [Roochnik on Thales]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A set is 'well-ordered' if every subset has a first element [Clegg]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory made a closer study of infinity possible [Clegg]
Any set can always generate a larger set - its powerset, of subsets [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: Two sets are equal if and only if they have the same elements [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: For any two sets there exists a set to which they both belong [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Unions: There is a set of all the elements which belong to at least one set in a collection [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There exists a set of the empty set and the successor of each element [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Powers: All the subsets of a given set form their own new powerset [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: For every set a mechanism will choose one member of any non-empty subset [Clegg]
The Axiom of Choice is a non-logical principle of set-theory [Hossack]
The Axiom of Choice guarantees a one-one correspondence from sets to ordinals [Hossack]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Axiom of Existence: there exists at least one set [Clegg]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: a condition applied to a set will always produce a new set [Clegg]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Predicativism says only predicated sets exist [Hossack]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception has to appropriate Replacement, to justify the ordinals [Hossack]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size justifies Replacement, but then has to appropriate Power Set [Hossack]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe we reduce sets to ordinals, rather than the other way round [Hossack]
4. Formal Logic / G. Formal Mereology / 3. Axioms of Mereology
Extensional mereology needs two definitions and two axioms [Hossack]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / d. and
The connective 'and' can have an order-sensitive meaning, as 'and then' [Hossack]
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
'Before' and 'after' are not two relations, but one relation with two orders [Hossack]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Plural definite descriptions pick out the largest class of things that fit the description [Hossack]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Plural reference will refer to complex facts without postulating complex things [Hossack]
Plural reference is just an abbreviation when properties are distributive, but not otherwise [Hossack]
A plural comprehension principle says there are some things one of which meets some condition [Hossack]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
Plural language can discuss without inconsistency things that are not members of themselves [Hossack]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics can be 'pure' (unapplied), 'real' (physically grounded); or 'applied' (just applicable) [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Beyond infinity cardinals and ordinals can come apart [Clegg]
An ordinal number is defined by the set that comes before it [Clegg]
The theory of the transfinite needs the ordinal numbers [Hossack]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Transcendental numbers can't be fitted to finite equations [Clegg]
I take the real numbers to be just lengths [Hossack]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / k. Imaginary numbers
By adding an axis of imaginary numbers, we get the useful 'number plane' instead of number line [Clegg]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Either lack of zero made early mathematics geometrical, or the geometrical approach made zero meaningless [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's account of infinities has the shaky foundation of irrational numbers [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis is independent of the axioms of set theory [Clegg]
The 'continuum hypothesis' says aleph-one is the cardinality of the reals [Clegg]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Transfinite ordinals are needed in proof theory, and for recursive functions and computability [Hossack]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
A plural language gives a single comprehensive induction axiom for arithmetic [Hossack]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
In arithmetic singularists need sets as the instantiator of numeric properties [Hossack]
Set theory is the science of infinity [Hossack]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Numbers are properties, not sets (because numbers are magnitudes) [Hossack]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
We can only mentally construct potential infinities, but maths needs actual infinities [Hossack]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
We are committed to a 'group' of children, if they are sitting in a circle [Hossack]
9. Objects / C. Structure of Objects / 5. Composition of an Object
Complex particulars are either masses, or composites, or sets [Hossack]
The relation of composition is indispensable to the part-whole relation for individuals [Hossack]
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
Leibniz's Law argues against atomism - water is wet, unlike water molecules [Hossack]
The fusion of five rectangles can decompose into more than five parts that are rectangles [Hossack]
10. Modality / C. Sources of Modality / 5. Modality from Actuality
Nothing is stronger than necessity, which rules everything [Thales, by Diog. Laertius]
18. Thought / A. Modes of Thought / 1. Thought
A thought can refer to many things, but only predicate a universal and affirm a state of affairs [Hossack]
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / c. Ultimate substances
Thales said water is the first principle, perhaps from observing that food is moist [Thales, by Aristotle]
27. Natural Reality / A. Classical Physics / 1. Mechanics / a. Explaining movement
Thales must have thought soul causes movement, since he thought magnets have soul [Thales, by Aristotle]
27. Natural Reality / C. Space / 2. Space
We could ignore space, and just talk of the shape of matter [Hossack]
29. Religion / A. Polytheistic Religion / 2. Greek Polytheism
Thales said the gods know our wrong thoughts as well as our evil actions [Thales, by Diog. Laertius]