Combining Philosophers

All the ideas for Speussipus, Kurt Gdel and Charles Chihara

expand these ideas     |    start again     |     specify just one area for these philosophers


64 ideas

2. Reason / A. Nature of Reason / 1. On Reason
For clear questions posed by reason, reason can also find clear answers [Gödel]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative Definitions refer to the totality to which the object itself belongs [Gödel]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Prior to Gödel we thought truth in mathematics consisted in provability [Gödel, by Quine]
4. Formal Logic / C. Predicate Calculus PC / 3. Completeness of PC
Gödel proved the completeness of first order predicate logic in 1930 [Gödel, by Walicki]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
We only know relational facts about the empty set, but nothing intrinsic [Chihara]
In simple type theory there is a hierarchy of null sets [Chihara]
Realists about sets say there exists a null set in the real world, with no members [Chihara]
The null set is a structural position which has no other position in membership relation [Chihara]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
What is special about Bill Clinton's unit set, in comparison with all the others? [Chihara]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Gödel show that the incompleteness of set theory was a necessity [Gödel, by Hallett,M]
We perceive the objects of set theory, just as we perceive with our senses [Gödel]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Gödel proved the classical relative consistency of the axiom V = L [Gödel, by Putnam]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
In simple type theory the axiom of Separation is better than Reducibility [Gödel, by Linsky,B]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
The set theorist cannot tell us what 'membership' is [Chihara]
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
ZFU refers to the physical world, when it talks of 'urelements' [Chihara]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Could we replace sets by the open sentences that define them? [Chihara, by Bostock]
A pack of wolves doesn't cease when one member dies [Chihara]
We could talk of open sentences, instead of sets [Chihara, by Shapiro]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Gödel proved that first-order logic is complete, and second-order logic incomplete [Gödel, by Dummett]
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Mathematical Logic is a non-numerical branch of mathematics, and the supreme science [Gödel]
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
The mathematics of relations is entirely covered by ordered pairs [Chihara]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Reference to a totality need not refer to a conjunction of all its elements [Gödel]
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
Originally truth was viewed with total suspicion, and only demonstrability was accepted [Gödel]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The limitations of axiomatisation were revealed by the incompleteness theorems [Gödel, by Koellner]
5. Theory of Logic / K. Features of Logics / 2. Consistency
Second Incompleteness: nice theories can't prove their own consistency [Gödel, by Smith,P]
Sentences are consistent if they can all be true; for Frege it is that no contradiction can be deduced [Chihara]
5. Theory of Logic / K. Features of Logics / 3. Soundness
If soundness can't be proved internally, 'reflection principles' can be added to assert soundness [Gödel, by Halbach/Leigh]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Gödel's Theorems did not refute the claim that all good mathematical questions have answers [Gödel, by Koellner]
Gödel's First Theorem sabotages logicism, and the Second sabotages Hilbert's Programme [Smith,P on Gödel]
The undecidable sentence can be decided at a 'higher' level in the system [Gödel]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A logical system needs a syntactical survey of all possible expressions [Gödel]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
Set-theory paradoxes are no worse than sense deception in physics [Gödel]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
There can be no single consistent theory from which all mathematical truths can be derived [Gödel, by George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The generalized Continuum Hypothesis asserts a discontinuity in cardinal numbers [Gödel]
The Continuum Hypothesis is not inconsistent with the axioms of set theory [Gödel, by Clegg]
If set theory is consistent, we cannot refute or prove the Continuum Hypothesis [Gödel, by Hart,WD]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Analytic geometry gave space a mathematical structure, which could then have axioms [Chihara]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Gödel eventually hoped for a generalised completeness theorem leaving nothing undecidable [Gödel, by Koellner]
The real reason for Incompleteness in arithmetic is inability to define truth in a language [Gödel]
First Incompleteness: arithmetic must always be incomplete [Gödel, by Smith,P]
Arithmetical truth cannot be fully and formally derived from axioms and inference rules [Gödel, by Nagel/Newman]
Gödel showed that arithmetic is either incomplete or inconsistent [Gödel, by Rey]
Gödel's Second says that semantic consequence outruns provability [Gödel, by Hanna]
First Incompleteness: a decent consistent system is syntactically incomplete [Gödel, by George/Velleman]
Second Incompleteness: a decent consistent system can't prove its own consistency [Gödel, by George/Velleman]
There is a sentence which a theory can show is true iff it is unprovable [Gödel, by Smith,P]
'This system can't prove this statement' makes it unprovable either way [Gödel, by Clegg]
Some arithmetical problems require assumptions which transcend arithmetic [Gödel]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
We can replace existence of sets with possibility of constructing token sentences [Chihara, by MacBride]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Mathematical objects are as essential as physical objects are for perception [Gödel]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Basic mathematics is related to abstract elements of our empirical ideas [Gödel]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Chihara's system is a variant of type theory, from which he can translate sentences [Chihara, by Shapiro]
We can replace type theory with open sentences and a constructibility quantifier [Chihara, by Shapiro]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Introduce a constructibility quantifiers (Cx)Φ - 'it is possible to construct an x such that Φ' [Chihara, by Shapiro]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Impredicative definitions are admitted into ordinary mathematics [Gödel]
Realists are happy with impredicative definitions, which describe entities in terms of other existing entities [Gödel, by Shapiro]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
If a successful theory confirms mathematics, presumably a failed theory disconfirms it? [Chihara]
No scientific explanation would collapse if mathematical objects were shown not to exist [Chihara]
9. Objects / B. Unity of Objects / 2. Substance / c. Types of substance
Speusippus suggested underlying principles for every substance, and ended with a huge list [Speussipus, by Aristotle]
17. Mind and Body / C. Functionalism / 2. Machine Functionalism
Basic logic can be done by syntax, with no semantics [Gödel, by Rey]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
I prefer the open sentences of a Constructibility Theory, to Platonist ideas of 'equivalence classes' [Chihara]
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
Mathematical entities are causally inert, so the causal theory of reference won't work for them [Chihara]
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
'Gunk' is an individual possessing no parts that are atoms [Chihara]
28. God / C. Attitudes to God / 5. Atheism
Speusippus said things were governed by some animal force rather than the gods [Speussipus, by Cicero]