Combining Philosophers

All the ideas for Rescher,N/Oppenheim,P, Penelope Maddy and B Russell/AN Whitehead

expand these ideas     |    start again     |     specify just one area for these philosophers


84 ideas

4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
The best known axiomatization of PL is Whitehead/Russell, with four axioms and two rules [Russell/Whitehead, by Hughes/Cresswell]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
'Forcing' can produce new models of ZFC from old models [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
A Large Cardinal Axiom would assert ever-increasing stages in the hierarchy [Maddy]
New axioms are being sought, to determine the size of the continuum [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
The Axiom of Extensionality seems to be analytic [Maddy]
Extensional sets are clearer, simpler, unique and expressive [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The Axiom of Infinity states Cantor's breakthrough that launched modern mathematics [Maddy]
Infinite sets are essential for giving an account of the real numbers [Maddy]
Axiom of Infinity: completed infinite collections can be treated mathematically [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set Axiom is needed for, and supported by, accounts of the continuum [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
The Axiom of Foundation says every set exists at a level in the set hierarchy [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Efforts to prove the Axiom of Choice have failed [Maddy]
Modern views say the Choice set exists, even if it can't be constructed [Maddy]
A large array of theorems depend on the Axiom of Choice [Maddy]
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Russell saw Reducibility as legitimate for reducing classes to logic [Linsky,B on Russell/Whitehead]
Axiom of Reducibility: propositional functions are extensionally predicative [Maddy]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The Iterative Conception says everything appears at a stage, derived from the preceding appearances [Maddy]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is a vague intuition that over-large sets may generate paradoxes [Maddy]
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
The master science is physical objects divided into sets [Maddy]
Maddy replaces pure sets with just objects and perceived sets of objects [Maddy, by Shapiro]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Russell denies extensional sets, because the null can't be a collection, and the singleton is just its element [Russell/Whitehead, by Shapiro]
We regard classes as mere symbolic or linguistic conveniences [Russell/Whitehead]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Henkin semantics is more plausible for plural logic than for second-order logic [Maddy]
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Lewis's 'strict implication' preserved Russell's confusion of 'if...then' with implication [Quine on Russell/Whitehead]
Russell's implication means that random sentences imply one another [Lewis,CI on Russell/Whitehead]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Russell unusually saw logic as 'interpreted' (though very general, and neutral) [Russell/Whitehead, by Linsky,B]
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Critics of if-thenism say that not all starting points, even consistent ones, are worth studying [Maddy]
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
'Propositional functions' are propositions with a variable as subject or predicate [Maddy]
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
In 'Principia' a new abstract theory of relations appeared, and was applied [Russell/Whitehead, by Gödel]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Hilbert's geometry and Dedekind's real numbers were role models for axiomatization [Maddy]
If two mathematical themes coincide, that suggest a single deep truth [Maddy]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A real number is the class of rationals less than the number [Russell/Whitehead, by Shapiro]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Completed infinities resulted from giving foundations to calculus [Maddy]
Cantor and Dedekind brought completed infinities into mathematics [Maddy]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
Every infinite set of reals is either countable or of the same size as the full set of reals [Maddy]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Infinity has degrees, and large cardinals are the heart of set theory [Maddy]
For any cardinal there is always a larger one (so there is no set of all sets) [Maddy]
An 'inaccessible' cardinal cannot be reached by union sets or power sets [Maddy]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Theorems about limits could only be proved once the real numbers were understood [Maddy]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / a. Defining numbers
Russell takes numbers to be classes, but then reduces the classes to numerical quantifiers [Russell/Whitehead, by Bostock]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The extension of concepts is not important to me [Maddy]
In the ZFC hierarchy it is impossible to form Frege's set of all three-element sets [Maddy]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege solves the Caesar problem by explicitly defining each number [Maddy]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory (unlike the Peano postulates) can explain why multiplication is commutative [Maddy]
Standardly, numbers are said to be sets, which is neat ontology and epistemology [Maddy]
Numbers are properties of sets, just as lengths are properties of physical objects [Maddy]
A natural number is a property of sets [Maddy, by Oliver]
Making set theory foundational to mathematics leads to very fruitful axioms [Maddy]
Unified set theory gives a final court of appeal for mathematics [Maddy]
Set theory brings mathematics into one arena, where interrelations become clearer [Maddy]
Identifying geometric points with real numbers revealed the power of set theory [Maddy]
The line of rationals has gaps, but set theory provided an ordered continuum [Maddy]
Set-theory tracks the contours of mathematical depth and fruitfulness [Maddy]
Mathematics rests on the logic of proofs, and on the set theoretic axioms [Maddy]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Number theory doesn't 'reduce' to set theory, because sets have number properties [Maddy]
Sets exist where their elements are, but numbers are more like universals [Maddy]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
If mathematical objects exist, how can we know them, and which objects are they? [Maddy]
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Intuition doesn't support much mathematics, and we should question its reliability [Maddy, by Shapiro]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
We know mind-independent mathematical truths through sets, which rest on experience [Maddy, by Jenkins]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Scientists posit as few entities as possible, but set theorist posit as many as possible [Maddy]
Maybe applications of continuum mathematics are all idealisations [Maddy]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The connection of arithmetic to perception has been idealised away in modern infinitary mathematics [Maddy]
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are unusual as adjectives; we don't say 'is five', and numbers always come first [Maddy]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Russell and Whitehead took arithmetic to be higher-order logic [Russell/Whitehead, by Hodes]
Russell and Whitehead were not realists, but embraced nearly all of maths in logic [Russell/Whitehead, by Friend]
'Principia' lacks a precise statement of the syntax [Gödel on Russell/Whitehead]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
The ramified theory of types used propositional functions, and covered bound variables [Russell/Whitehead, by George/Velleman]
The Russell/Whitehead type theory was limited, and was not really logic [Friend on Russell/Whitehead]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
We can get arithmetic directly from HP; Law V was used to get HP from the definition of number [Maddy]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
In 'Principia Mathematica', logic is exceeded in the axioms of infinity and reducibility, and in the domains [Bernays on Russell/Whitehead]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Russell and Whitehead consider the paradoxes to indicate that we create mathematical reality [Russell/Whitehead, by Friend]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
To avoid vicious circularity Russell produced ramified type theory, but Ramsey simplified it [Russell/Whitehead, by Shapiro]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
The theoretical indispensability of atoms did not at first convince scientists that they were real [Maddy]
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
A whole must have one characteristic, an internal relation, and a structure [Rescher/Oppenheim]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
An object is identical with itself, and no different indiscernible object can share that [Russell/Whitehead, by Adams,RM]
12. Knowledge Sources / E. Direct Knowledge / 2. Intuition
Russell showed, through the paradoxes, that our basic logical intuitions are self-contradictory [Russell/Whitehead, by Gödel]
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Science idealises the earth's surface, the oceans, continuities, and liquids [Maddy]
18. Thought / A. Modes of Thought / 6. Judgement / a. Nature of Judgement
The multiple relations theory says assertions about propositions are about their ingredients [Russell/Whitehead, by Linsky,B]
A judgement is a complex entity, of mind and various objects [Russell/Whitehead]
The meaning of 'Socrates is human' is completed by a judgement [Russell/Whitehead]
The multiple relation theory of judgement couldn't explain the unity of sentences [Morris,M on Russell/Whitehead]
Only the act of judging completes the meaning of a statement [Russell/Whitehead]
19. Language / D. Propositions / 3. Concrete Propositions
Propositions as objects of judgement don't exist, because we judge several objects, not one [Russell/Whitehead]