Combining Philosophers

All the ideas for Rescher,N/Oppenheim,P, Michael Williams and Shaughan Lavine

expand these ideas     |    start again     |     specify just one area for these philosophers


68 ideas

3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
The only way to specify the corresponding fact is asserting the sentence [Williams,M]
3. Truth / D. Coherence Truth / 1. Coherence Truth
Coherence needs positive links, not just absence of conflict [Williams,M]
Justification needs coherence, while truth might be ideal coherence [Williams,M]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
5. Theory of Logic / A. Overview of Logic / 3. Value of Logic
Deduction shows entailments, not what to believe [Williams,M]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
A whole must have one characteristic, an internal relation, and a structure [Rescher/Oppenheim]
11. Knowledge Aims / A. Knowledge / 4. Belief / a. Beliefs
We could never pin down how many beliefs we have [Williams,M]
11. Knowledge Aims / B. Certain Knowledge / 1. Certainty
Propositions make error possible, so basic experiential knowledge is impossible [Williams,M]
11. Knowledge Aims / C. Knowing Reality / 2. Phenomenalism
Phenomenalism is a form of idealism [Williams,M]
12. Knowledge Sources / B. Perception / 4. Sense Data / a. Sense-data theory
Sense data avoid the danger of misrepresenting the world [Williams,M]
12. Knowledge Sources / B. Perception / 4. Sense Data / d. Sense-data problems
Sense data can't give us knowledge if they are non-propositional [Williams,M]
13. Knowledge Criteria / A. Justification Problems / 1. Justification / a. Justification issues
Is it people who are justified, or propositions? [Williams,M]
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / a. Agrippa's trilemma
Coherentists say that regress problems are assuming 'linear' justification [Williams,M]
13. Knowledge Criteria / B. Internal Justification / 2. Pragmatic justification
What works always takes precedence over theories [Williams,M]
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / a. Foundationalism
Traditional foundationalism is radically internalist [Williams,M]
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / b. Basic beliefs
Experience must be meaningful to act as foundations [Williams,M]
Basic judgements are immune from error because they have no content [Williams,M]
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / c. Empirical foundations
Are empirical foundations judgements or experiences? [Williams,M]
Sensory experience may be fixed, but it can still be misdescribed [Williams,M]
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / f. Foundationalism critique
Foundationalists are torn between adequacy and security [Williams,M]
Strong justification eliminates error, but also reduces our true beliefs [Williams,M]
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / c. Coherentism critique
Why should diverse parts of our knowledge be connected? [Williams,M]
Coherence theory must give a foundational status to coherence itself [Williams,M]
13. Knowledge Criteria / C. External Justification / 1. External Justification
Externalism does not require knowing that you know [Williams,M]
Externalism ignores the social aspect of knowledge [Williams,M]
13. Knowledge Criteria / C. External Justification / 2. Causal Justification
In the causal theory of knowledge the facts must cause the belief [Williams,M]
How could there be causal relations to mathematical facts? [Williams,M]
Only a belief can justify a belief [Williams,M]
13. Knowledge Criteria / C. External Justification / 3. Reliabilism / a. Reliable knowledge
Externalist reliability refers to a range of conventional conditions [Williams,M]
13. Knowledge Criteria / C. External Justification / 3. Reliabilism / b. Anti-reliabilism
Sometimes I ought to distrust sources which are actually reliable [Williams,M]
13. Knowledge Criteria / C. External Justification / 5. Controlling Beliefs
We control our beliefs by virtue of how we enquire [Williams,M]
13. Knowledge Criteria / C. External Justification / 10. Anti External Justification
In the context of scepticism, externalism does not seem to be an option [Williams,M]
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
Scepticism just reveals our limited ability to explain things [Williams,M]
13. Knowledge Criteria / D. Scepticism / 2. Types of Scepticism
Scepticism can involve discrepancy, relativity, infinity, assumption and circularity [Williams,M]
14. Science / A. Basis of Science / 1. Observation
Seeing electrons in a cloud chamber requires theory [Williams,M]
19. Language / A. Nature of Meaning / 7. Meaning Holism / a. Sentence meaning
Foundationalists base meaning in words, coherentists base it in sentences [Williams,M]