Combining Philosophers

All the ideas for Rescher,N/Oppenheim,P, Kenneth Kunen and Bert Leuridan

expand these ideas     |    start again     |     specify just one area for these philosophers


24 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
8. Modes of Existence / A. Relations / 4. Formal Relations / b. Equivalence relation
An 'equivalence' relation is one which is reflexive, symmetric and transitive [Kunen]
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
A whole must have one characteristic, an internal relation, and a structure [Rescher/Oppenheim]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Generalisations must be invariant to explain anything [Leuridan]
14. Science / D. Explanation / 2. Types of Explanation / h. Explanations by function
Biological functions are explained by disposition, or by causal role [Leuridan]
14. Science / D. Explanation / 2. Types of Explanation / i. Explanations by mechanism
Mechanisms must produce macro-level regularities, but that needs micro-level regularities [Leuridan]
Mechanisms can't explain on their own, as their models rest on pragmatic regularities [Leuridan]
We can show that regularities and pragmatic laws are more basic than mechanisms [Leuridan]
Mechanisms are ontologically dependent on regularities [Leuridan]
14. Science / D. Explanation / 3. Best Explanation / b. Ultimate explanation
There is nothing wrong with an infinite regress of mechanisms and regularities [Leuridan]
26. Natural Theory / A. Speculations on Nature / 3. Natural Function
Rather than dispositions, functions may be the element that brought a thing into existence [Leuridan]
26. Natural Theory / D. Laws of Nature / 3. Laws and Generalities
Pragmatic laws allow prediction and explanation, to the extent that reality is stable [Leuridan]
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
Strict regularities are rarely discovered in life sciences [Leuridan]
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
A 'law of nature' is just a regularity, not some entity that causes the regularity [Leuridan]