Combining Philosophers

All the ideas for Rescher,N/Oppenheim,P, David Hilbert and Peter Smith

expand these ideas     |    start again     |     specify just one area for these philosophers


74 ideas

3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
If axioms and their implications have no contradictions, they pass my criterion of truth and existence [Hilbert]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
There cannot be a set theory which is complete [Smith,P]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order arithmetic can prove new sentences of first-order [Smith,P]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
You would cripple mathematics if you denied Excluded Middle [Hilbert]
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'partial function' maps only some elements to another set [Smith,P]
A 'total function' maps every element to one element in another set [Smith,P]
An argument is a 'fixed point' for a function if it is mapped back to itself [Smith,P]
The 'range' of a function is the set of elements in the output set created by the function [Smith,P]
Two functions are the same if they have the same extension [Smith,P]
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
The Comprehension Schema says there is a property only had by things satisfying a condition [Smith,P]
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A 'theorem' of a theory is a sentence derived from the axioms using the proof system [Smith,P]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
A 'natural deduction system' has no axioms but many rules [Smith,P]
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
No nice theory can define truth for its own language [Smith,P]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'injective' ('one-to-one') function creates a distinct output element from each original [Smith,P]
A 'surjective' ('onto') function creates every element of the output set [Smith,P]
A 'bijective' function has one-to-one correspondence in both directions [Smith,P]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The facts of geometry, arithmetic or statics order themselves into theories [Hilbert]
Axioms must reveal their dependence (or not), and must be consistent [Hilbert]
5. Theory of Logic / K. Features of Logics / 3. Soundness
If everything that a theory proves is true, then it is 'sound' [Smith,P]
Soundness is true axioms and a truth-preserving proof system [Smith,P]
A theory is 'sound' iff every theorem is true (usually from true axioms and truth-preservation) [Smith,P]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A theory is 'negation complete' if it proves all sentences or their negation [Smith,P]
'Complete' applies both to whole logics, and to theories within them [Smith,P]
A theory is 'negation complete' if one of its sentences or its negation can always be proved [Smith,P]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Two routes to Incompleteness: semantics of sound/expressible, or syntax of consistency/proof [Smith,P]
5. Theory of Logic / K. Features of Logics / 7. Decidability
'Effective' means simple, unintuitive, independent, controlled, dumb, and terminating [Smith,P]
A theory is 'decidable' if all of its sentences could be mechanically proved [Smith,P]
Any consistent, axiomatized, negation-complete formal theory is decidable [Smith,P]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A set is 'enumerable' is all of its elements can result from a natural number function [Smith,P]
A set is 'effectively enumerable' if a computer could eventually list every member [Smith,P]
A finite set of finitely specifiable objects is always effectively enumerable (e.g. primes) [Smith,P]
The set of ordered pairs of natural numbers <i,j> is effectively enumerable [Smith,P]
The thorems of a nice arithmetic can be enumerated, but not the truths (so they're diffferent) [Smith,P]
5. Theory of Logic / K. Features of Logics / 9. Expressibility
Being 'expressible' depends on language; being 'capture/represented' depends on axioms and proof system [Smith,P]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Hilbert wanted to prove the consistency of all of mathematics (which realists take for granted) [Hilbert, by Friend]
I aim to establish certainty for mathematical methods [Hilbert]
We believe all mathematical problems are solvable [Hilbert]
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Hilbert aimed to eliminate number from geometry [Hilbert, by Hart,WD]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
For primes we write (x not= 1 ∧ ∀u∀v(u x v = x → (u = 1 ∨ v = 1))) [Smith,P]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The reals contain the naturals, but the theory of reals doesn't contain the theory of naturals [Smith,P]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
The truths of arithmetic are just true equations and their universally quantified versions [Smith,P]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
No one shall drive us out of the paradise the Cantor has created for us [Hilbert]
We extend finite statements with ideal ones, in order to preserve our logic [Hilbert]
Only the finite can bring certainty to the infinite [Hilbert]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The idea of an infinite totality is an illusion [Hilbert]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
There is no continuum in reality to realise the infinitely small [Hilbert]
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
To decide some questions, we must study the essence of mathematical proof itself [Hilbert]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid axioms concerns possibilities of construction, but Hilbert's assert the existence of objects [Hilbert, by Chihara]
Hilbert's formalisation revealed implicit congruence axioms in Euclid [Hilbert, by Horsten/Pettigrew]
Hilbert's geometry is interesting because it captures Euclid without using real numbers [Hilbert, by Field,H]
The whole of Euclidean geometry derives from a basic equation and transformations [Hilbert]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
All numbers are related to zero by the ancestral of the successor relation [Smith,P]
Number theory just needs calculation laws and rules for integers [Hilbert]
The number of Fs is the 'successor' of the Gs if there is a single F that isn't G [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / b. Baby arithmetic
Baby arithmetic covers addition and multiplication, but no general facts about numbers [Smith,P]
Baby Arithmetic is complete, but not very expressive [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / c. Robinson arithmetic
Robinson Arithmetic 'Q' has basic axioms, quantifiers and first-order logic [Smith,P]
Robinson Arithmetic (Q) is not negation complete [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Natural numbers have zero, unique successors, unending, no circling back, and no strays [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
The logic of arithmetic must quantify over properties of numbers to handle induction [Smith,P]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Multiplication only generates incompleteness if combined with addition and successor [Smith,P]
Incompleteness results in arithmetic from combining addition and successor with multiplication [Smith,P]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The existence of an arbitrarily large number refutes the idea that numbers come from experience [Hilbert]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logic already contains some arithmetic, so the two must be developed together [Hilbert]
6. Mathematics / C. Sources of Mathematics / 7. Formalism
The grounding of mathematics is 'in the beginning was the sign' [Hilbert]
Hilbert substituted a syntactic for a semantic account of consistency [Hilbert, by George/Velleman]
Hilbert said (to block paradoxes) that mathematical existence is entailed by consistency [Hilbert, by Potter]
The subject matter of mathematics is immediate and clear concrete symbols [Hilbert]
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Hilbert aimed to prove the consistency of mathematics finitely, to show infinities won't produce contradictions [Hilbert, by George/Velleman]
Mathematics divides in two: meaningful finitary statements, and empty idealised statements [Hilbert]
8. Modes of Existence / A. Relations / 4. Formal Relations / c. Ancestral relation
The 'ancestral' of a relation is a new relation which creates a long chain of the original relation [Smith,P]
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
A whole must have one characteristic, an internal relation, and a structure [Rescher/Oppenheim]
11. Knowledge Aims / B. Certain Knowledge / 1. Certainty
My theory aims at the certitude of mathematical methods [Hilbert]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
By digging deeper into the axioms we approach the essence of sciences, and unity of knowedge [Hilbert]