Combining Philosophers

All the ideas for Rayo,A/Uzquiasno,G, Richard Dedekind and Leslie H. Tharp

expand these ideas     |    start again     |     specify just one area for these philosophers


50 ideas

2. Reason / D. Definition / 9. Recursive Definition
Dedekind proved definition by recursion, and thus proved the basic laws of arithmetic [Dedekind, by Potter]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
The two best understood conceptions of set are the Iterative and the Limitation of Size [Rayo/Uzquiano]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
An infinite set maps into its own proper subset [Dedekind, by Reck/Price]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
We have the idea of self, and an idea of that idea, and so on, so infinite ideas are available [Dedekind, by Potter]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice now seems acceptable and obvious (if it is meaningful) [Tharp]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / m. Axiom of Separation
Some set theories give up Separation in exchange for a universal set [Rayo/Uzquiano]
4. Formal Logic / G. Formal Mereology / 1. Mereology
Dedekind originally thought more in terms of mereology than of sets [Dedekind, by Potter]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is either for demonstration, or for characterizing structures [Tharp]
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Elementary logic is complete, but cannot capture mathematics [Tharp]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic isn't provable, but will express set-theory and classic problems [Tharp]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
In sentential logic there is a simple proof that all truth functions can be reduced to 'not' and 'and' [Tharp]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
The main quantifiers extend 'and' and 'or' to infinite domains [Tharp]
We could have unrestricted quantification without having an all-inclusive domain [Rayo/Uzquiano]
Absolute generality is impossible, if there are indefinitely extensible concepts like sets and ordinals [Rayo/Uzquiano]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Perhaps second-order quantifications cover concepts of objects, rather than plain objects [Rayo/Uzquiano]
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
There are at least five unorthodox quantifiers that could be used [Tharp]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The Löwenheim-Skolem property is a limitation (e.g. can't say there are uncountably many reals) [Tharp]
Skolem mistakenly inferred that Cantor's conceptions were illusory [Tharp]
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness would seem to be an essential requirement of a proof procedure [Tharp]
5. Theory of Logic / K. Features of Logics / 4. Completeness
Completeness and compactness together give axiomatizability [Tharp]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
If completeness fails there is no algorithm to list the valid formulas [Tharp]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Compactness is important for major theories which have infinitely many axioms [Tharp]
Compactness blocks infinite expansion, and admits non-standard models [Tharp]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A complete logic has an effective enumeration of the valid formulas [Tharp]
Effective enumeration might be proved but not specified, so it won't guarantee knowledge [Tharp]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Numbers are free creations of the human mind, to understand differences [Dedekind]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Dedekind defined the integers, rationals and reals in terms of just the natural numbers [Dedekind, by George/Velleman]
Order, not quantity, is central to defining numbers [Dedekind, by Monk]
Ordinals can define cardinals, as the smallest ordinal that maps the set [Dedekind, by Heck]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Dedekind's ordinals are just members of any progression whatever [Dedekind, by Russell]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
We want the essence of continuity, by showing its origin in arithmetic [Dedekind]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A cut between rational numbers creates and defines an irrational number [Dedekind]
Dedekind's axiom that his Cut must be filled has the advantages of theft over honest toil [Dedekind, by Russell]
Dedekind says each cut matches a real; logicists say the cuts are the reals [Dedekind, by Bostock]
I say the irrational is not the cut itself, but a new creation which corresponds to the cut [Dedekind]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
In counting we see the human ability to relate, correspond and represent [Dedekind]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
Arithmetic is just the consequence of counting, which is the successor operation [Dedekind]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / b. Mark of the infinite
A system S is said to be infinite when it is similar to a proper part of itself [Dedekind]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
If x changes by less and less, it must approach a limit [Dedekind]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Dedekind gives a base number which isn't a successor, then adds successors and induction [Dedekind, by Hart,WD]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Zero is a member, and all successors; numbers are the intersection of sets satisfying this [Dedekind, by Bostock]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Categoricity implies that Dedekind has characterised the numbers, because it has one domain [Rumfitt on Dedekind]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Induction is proved in Dedekind, an axiom in Peano; the latter seems simpler and clearer [Dedekind, by Russell]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Dedekind originated the structuralist conception of mathematics [Dedekind, by MacBride]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Dedekindian abstraction talks of 'positions', where Cantorian abstraction talks of similar objects [Dedekind, by Fine,K]
9. Objects / A. Existence of Objects / 3. Objects in Thought
A thing is completely determined by all that can be thought concerning it [Dedekind]
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
Dedekind said numbers were abstracted from systems of objects, leaving only their position [Dedekind, by Dummett]
We derive the natural numbers, by neglecting everything of a system except distinctness and order [Dedekind]
18. Thought / E. Abstraction / 8. Abstractionism Critique
Dedekind has a conception of abstraction which is not psychologistic [Dedekind, by Tait]
19. Language / F. Communication / 5. Pragmatics / a. Contextual meaning
The domain of an assertion is restricted by context, either semantically or pragmatically [Rayo/Uzquiano]