Combining Philosophers

All the ideas for Parmenides, Herbert B. Enderton and George Cantor

expand these ideas     |    start again     |     specify just one area for these philosophers


114 ideas

2. Reason / A. Nature of Reason / 1. On Reason
Parmenides was much more cautious about accepting ideas than his predecessors [Simplicius on Parmenides]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Until the 1960s the only semantics was truth-tables [Enderton]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
Cantor developed sets from a progression into infinity by addition, multiplication and exponentiation [Cantor, by Lavine]
A set is a collection into a whole of distinct objects of our intuition or thought [Cantor]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
'dom R' indicates the 'domain' of objects having a relation [Enderton]
'fld R' indicates the 'field' of all objects in the relation [Enderton]
'ran R' indicates the 'range' of objects being related to [Enderton]
We write F:A→B to indicate that A maps into B (the output of F on A is in B) [Enderton]
'F(x)' is the unique value which F assumes for a value of x [Enderton]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
∈ says the whole set is in the other; ⊆ says the members of the subset are in the other [Enderton]
A relation is 'symmetric' on a set if every ordered pair has the relation in both directions [Enderton]
A relation is 'transitive' if it can be carried over from two ordered pairs to a third [Enderton]
The 'ordered pair' <x,y> is defined to be {{x}, {x,y}} [Enderton]
A 'linear or total ordering' must be transitive and satisfy trichotomy [Enderton]
The 'powerset' of a set is all the subsets of a given set [Enderton]
Two sets are 'disjoint' iff their intersection is empty [Enderton]
A 'domain' of a relation is the set of members of ordered pairs in the relation [Enderton]
A 'relation' is a set of ordered pairs [Enderton]
A 'function' is a relation in which each object is related to just one other object [Enderton]
A function 'maps A into B' if the relating things are set A, and the things related to are all in B [Enderton]
A function 'maps A onto B' if the relating things are set A, and the things related to are set B [Enderton]
A relation is 'reflexive' on a set if every member bears the relation to itself [Enderton]
A relation satisfies 'trichotomy' if all pairs are either relations, or contain identical objects [Enderton]
A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second [Enderton]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Note that {Φ} =/= Φ, because Φ ∈ {Φ} but Φ ∉ Φ [Enderton]
The empty set may look pointless, but many sets can be constructed from it [Enderton]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
The singleton is defined using the pairing axiom (as {x,x}) [Enderton]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
An 'equivalence relation' is a reflexive, symmetric and transitive binary relation [Enderton]
We 'partition' a set into distinct subsets, according to each relation on its objects [Enderton]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Cantor gives informal versions of ZF axioms as ways of getting from one set to another [Cantor, by Lake]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Fraenkel added Replacement, to give a theory of ordinal numbers [Enderton]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can only define functions if Choice tells us which items are involved [Enderton]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Inference not from content, but from the fact that it was said, is 'conversational implicature' [Enderton]
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Validity is either semantic (what preserves truth), or proof-theoretic (following procedures) [Enderton]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth or tautology is a logical consequence of the empty set [Enderton]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A truth assignment to the components of a wff 'satisfy' it if the wff is then True [Enderton]
5. Theory of Logic / K. Features of Logics / 3. Soundness
A proof theory is 'sound' if its valid inferences entail semantic validity [Enderton]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A proof theory is 'complete' if semantically valid inferences entail proof-theoretic validity [Enderton]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Proof in finite subsets is sufficient for proof in an infinite set [Enderton]
5. Theory of Logic / K. Features of Logics / 7. Decidability
Expressions are 'decidable' if inclusion in them (or not) can be proved [Enderton]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
For a reasonable language, the set of valid wff's can always be enumerated [Enderton]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
Ordinals are generated by endless succession, followed by a limit ordinal [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
Cantor needed Power Set for the reals, but then couldn't count the new collections [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The 'extension of a concept' in general may be quantitatively completely indeterminate [Cantor]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
7. Existence / A. Nature of Existence / 3. Being / a. Nature of Being
No necessity could produce Being either later or earlier, so it must exist absolutely or not at all [Parmenides]
Being must be eternal and uncreated, and hence it is timeless [Parmenides]
Being is not divisible, since it is all alike [Parmenides]
7. Existence / A. Nature of Existence / 3. Being / d. Non-being
There is no such thing as nothing [Parmenides]
The realm of necessary non-existence cannot be explored, because it is unknowable [Parmenides]
7. Existence / A. Nature of Existence / 3. Being / f. Primary being
Parmenides at least saw Being as the same as Nous, and separate from the sensed realm [Parmenides, by Plotinus]
7. Existence / B. Change in Existence / 1. Nature of Change
All our concepts of change and permanence are just names, not the truth [Parmenides]
9. Objects / E. Objects over Time / 1. Objects over Time
Something must be unchanging to make recognition and knowledge possible [Aristotle on Parmenides]
10. Modality / A. Necessity / 5. Metaphysical Necessity
The first way of enquiry involves necessary existence [Parmenides]
10. Modality / A. Necessity / 8. Transcendental Necessity
Necessity sets limits on being, in order to give it identity [Parmenides]
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
Sentences with 'if' are only conditionals if they can read as A-implies-B [Enderton]
11. Knowledge Aims / B. Certain Knowledge / 4. The Cogito
Thinking implies existence, because thinking depends on it [Parmenides]
12. Knowledge Sources / B. Perception / 1. Perception
Parmenides treats perception and intellectual activity as the same [Theophrastus on Parmenides]
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Only reason can prove the truth of facts [Parmenides]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
We form the image of a cardinal number by a double abstraction, from the elements and from their order [Cantor]
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / e. The One
People who say that the cosmos is one forget that they must explain movement [Aristotle on Parmenides]
There could be movement within one thing, as there is within water [Aristotle on Parmenides]
The one can't be divisible, because if it was it could be infinitely divided down to nothing [Parmenides, by Simplicius]
Defenders of the One say motion needs the void - but that is not part of Being [Parmenides, by Aristotle]
The one is without any kind of motion [Parmenides]
Reason sees reality as one, the senses see it as many [Aristotle on Parmenides]
Reality is symmetrical and balanced, like a sphere, with no reason to be greater one way rather than another [Parmenides]
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / f. Ancient elements
He taught that there are two elements, fire the maker, and earth the matter [Parmenides, by Diog. Laertius]
27. Natural Reality / A. Classical Physics / 1. Mechanics / a. Explaining movement
It is feeble-minded to look for explanations of everything being at rest [Aristotle on Parmenides]
27. Natural Reality / C. Space / 1. Void
The void can't exist, and without the void there can't be movement or separation [Parmenides, by Aristotle]
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
27. Natural Reality / D. Time / 3. Parts of Time / a. Beginning of time
What could have triggered the beginning [of time and being]? [Parmenides]
27. Natural Reality / E. Cosmology / 1. Cosmology
He was the first person to say the earth is spherical [Parmenides, by Diog. Laertius]
He was the first to discover the identity of the Morning and Evening Stars [Parmenides, by Diog. Laertius]
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]