Combining Philosophers

All the ideas for Lynch,MP/Glasgow,JM, Isaac Newton and ystein Linnebo

expand these ideas     |    start again     |     specify just one area for these philosophers


86 ideas

1. Philosophy / D. Nature of Philosophy / 1. Philosophy
Philosophy must abstract from the senses [Newton]
2. Reason / D. Definition / 12. Paraphrase
'Some critics admire only one another' cannot be paraphrased in singular first-order [Linnebo]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
A comprehension axiom is 'predicative' if the formula has no bound second-order variables [Linnebo]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory says any formula defines a set, and coextensive sets are identical [Linnebo]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
A 'pure logic' must be ontologically innocent, universal, and without presuppositions [Linnebo]
A pure logic is wholly general, purely formal, and directly known [Linnebo]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Plural quantification depends too heavily on combinatorial and set-theoretic considerations [Linnebo]
Second-order quantification and plural quantification are different [Linnebo]
Traditionally we eliminate plurals by quantifying over sets [Linnebo]
Instead of complex objects like tables, plurally quantify over mereological atoms tablewise [Linnebo]
Can second-order logic be ontologically first-order, with all the benefits of second-order? [Linnebo]
Plural plurals are unnatural and need a first-level ontology [Linnebo]
Plural quantification may allow a monadic second-order theory with first-order ontology [Linnebo]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
In classical semantics singular terms refer, and quantifiers range over domains [Linnebo]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The axioms of group theory are not assertions, but a definition of a structure [Linnebo]
To investigate axiomatic theories, mathematics needs its own foundational axioms [Linnebo]
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Newton developed a kinematic approach to geometry [Newton, by Kitcher]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
We can talk of 'innumerable number', about the infinite points on a line [Newton]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Not all infinites are equal [Newton]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Quantities and ratios which continually converge will eventually become equal [Newton]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
You can't prove consistency using a weaker theory, but you can use a consistent theory [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
A number is not a multitude, but a unified ratio between quantities [Newton]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematics is the study of all possible patterns, and is thus bound to describe the world [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
'Deductivist' structuralism is just theories, with no commitment to objects, or modality [Linnebo]
Non-eliminative structuralism treats mathematical objects as positions in real abstract structures [Linnebo]
'Modal' structuralism studies all possible concrete models for various mathematical theories [Linnebo]
'Set-theoretic' structuralism treats mathematics as various structures realised among the sets [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Structuralism differs from traditional Platonism, because the objects depend ontologically on their structure [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Structuralism is right about algebra, but wrong about sets [Linnebo]
In mathematical structuralism the small depends on the large, which is the opposite of physical structures [Linnebo]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logical truth is true in all models, so mathematical objects can't be purely logical [Linnebo]
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Game Formalism has no semantics, and Term Formalism reduces the semantics [Linnebo]
7. Existence / C. Structure of Existence / 3. Levels of Reality
A necessary relation between fact-levels seems to be a further irreducible fact [Lynch/Glasgow]
7. Existence / C. Structure of Existence / 4. Ontological Dependence
There may be a one-way direction of dependence among sets, and among natural numbers [Linnebo]
7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
If some facts 'logically supervene' on some others, they just redescribe them, adding nothing [Lynch/Glasgow]
7. Existence / D. Theories of Reality / 6. Physicalism
Nonreductive materialism says upper 'levels' depend on lower, but don't 'reduce' [Lynch/Glasgow]
The hallmark of physicalism is that each causal power has a base causal power under it [Lynch/Glasgow]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
We speak of a theory's 'ideological commitments' as well as its 'ontological commitments' [Linnebo]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
Ordinary speakers posit objects without concern for ontology [Linnebo]
8. Modes of Existence / B. Properties / 4. Intrinsic Properties
An 'intrinsic' property is either found in every duplicate, or exists independent of all externals [Linnebo]
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
I suspect that each particle of bodies has attractive or repelling forces [Newton]
9. Objects / A. Existence of Objects / 1. Physical Objects
The modern concept of an object is rooted in quantificational logic [Linnebo]
9. Objects / B. Unity of Objects / 1. Unifying an Object / b. Unifying aggregates
Particles mutually attract, and cohere at short distances [Newton]
9. Objects / C. Structure of Objects / 8. Parts of Objects / b. Sums of parts
The place of a thing is the sum of the places of its parts [Newton]
14. Science / B. Scientific Theories / 6. Theory Holism
If you changed one of Newton's concepts you would destroy his whole system [Heisenberg on Newton]
14. Science / C. Induction / 1. Induction
Science deduces propositions from phenomena, and generalises them by induction [Newton]
14. Science / D. Explanation / 2. Types of Explanation / g. Causal explanations
We should admit only enough causes to explain a phenomenon, and no more [Newton]
Natural effects of the same kind should be assumed to have the same causes [Newton]
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
From the phenomena, I can't deduce the reason for the properties of gravity [Newton]
19. Language / C. Assigning Meanings / 3. Predicates
Predicates are 'distributive' or 'non-distributive'; do individuals do what the group does? [Linnebo]
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / c. Ultimate substances
Newton's four fundamentals are: space, time, matter and force [Newton, by Russell]
26. Natural Theory / A. Speculations on Nature / 7. Later Matter Theories / a. Early Modern matter
Mass is central to matter [Newton, by Hart,WD]
26. Natural Theory / A. Speculations on Nature / 7. Later Matter Theories / b. Corpuscles
An attraction of a body is the sum of the forces of their particles [Newton]
26. Natural Theory / C. Causation / 1. Causation
Newtonian causation is changes of motion resulting from collisions [Newton, by Baron/Miller]
26. Natural Theory / D. Laws of Nature / 1. Laws of Nature
The principles of my treatise are designed to fit with a belief in God [Newton]
Principles of things are not hidden features of forms, but the laws by which they were formed [Newton]
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
I do not pretend to know the cause of gravity [Newton]
26. Natural Theory / D. Laws of Nature / 6. Laws as Numerical
You have discovered that elliptical orbits result just from gravitation and planetary movement [Newton, by Leibniz]
We have given up substantial forms, and now aim for mathematical laws [Newton]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / c. Essence and laws
I am not saying gravity is essential to bodies [Newton]
I won't object if someone shows that gravity consistently arises from the action of matter [Newton]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / e. Anti scientific essentialism
The motions of the planets could only derive from an intelligent agent [Newton]
That gravity should be innate and essential to matter is absurd [Newton]
27. Natural Reality / A. Classical Physics / 1. Mechanics / a. Explaining movement
Newton reclassified vertical motion as violent, and unconstrained horizontal motion as natural [Newton, by Harré]
27. Natural Reality / A. Classical Physics / 1. Mechanics / b. Laws of motion
Inertia rejects the Aristotelian idea of things having natural states, to which they return [Newton, by Alexander,P]
1: Bodies rest, or move in straight lines, unless acted on by forces [Newton]
3: All actions of bodies have an equal and opposite reaction [Newton]
Newton's Third Law implies the conservation of momentum [Newton, by Papineau]
2: Change of motion is proportional to the force [Newton]
27. Natural Reality / A. Classical Physics / 1. Mechanics / c. Forces
Newton's idea of force acting over a long distance was very strange [Heisenberg on Newton]
Newton introduced forces other than by contact [Newton, by Papineau]
Newton's laws cover the effects of forces, but not their causes [Newton, by Papineau]
Newton's forces were accused of being the scholastics' real qualities [Pasnau on Newton]
I am studying the quantities and mathematics of forces, not their species or qualities [Newton]
The aim is to discover forces from motions, and use forces to demonstrate other phenomena [Newton]
27. Natural Reality / A. Classical Physics / 1. Mechanics / d. Gravity
Newton showed that falling to earth and orbiting the sun are essentially the same [Newton, by Ellis]
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / c. Conservation of energy
Early Newtonians could not formulate conservation of energy, having no concept of potential energy [Newton, by Papineau]
27. Natural Reality / C. Space / 4. Substantival Space
Absolute space is independent, homogeneous and immovable [Newton]
27. Natural Reality / D. Time / 1. Nature of Time / a. Absolute time
Newton needs intervals of time, to define velocity and acceleration [Newton, by Le Poidevin]
Newton thought his laws of motion needed absolute time [Newton, by Bardon]
Time exists independently, and flows uniformly [Newton]
Absolute time, from its own nature, flows equably, without relation to anything external [Newton]
27. Natural Reality / D. Time / 2. Passage of Time / g. Time's arrow
Newtonian mechanics does not distinguish negative from positive values of time [Newton, by Coveney/Highfield]
27. Natural Reality / D. Time / 3. Parts of Time / d. Measuring time
If there is no uniform motion, we cannot exactly measure time [Newton]
28. God / A. Divine Nature / 3. Divine Perfections
If a perfect being does not rule the cosmos, it is not God [Newton]
28. God / B. Proving God / 3. Proofs of Evidence / b. Teleological Proof
The elegance of the solar system requires a powerful intellect as designer [Newton]