Combining Philosophers

All the ideas for Iamblichus, New Scientist writers and Adrian Bardon

expand these ideas     |    start again     |     specify just one area for these philosophers


92 ideas

6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
The modern idea of 'limit' allows infinite quantities to have a finite sum [Bardon]
7. Existence / A. Nature of Existence / 3. Being / e. Being and nothing
An equally good question would be why there was nothing instead of something [Bardon]
7. Existence / A. Nature of Existence / 5. Reason for Existence
Current physics says matter and antimatter should have reduced to light at the big bang [New Sci.]
CP violation shows a decay imbalance in matter and antimatter, leading to matter's dominance [New Sci.]
14. Science / A. Basis of Science / 4. Prediction
A system can infer the structure of the world by making predictions about it [New Sci.]
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
Neural networks can extract the car-ness of a car, or the chair-ness of a chair [New Sci.]
18. Thought / A. Modes of Thought / 5. Rationality / a. Rationality
No one has yet devised a rationality test [New Sci.]
18. Thought / A. Modes of Thought / 7. Intelligence
About a third of variation in human intelligence is environmental [New Sci.]
People can be highly intelligent, yet very stupid [New Sci.]
18. Thought / B. Mechanics of Thought / 1. Psychology
Psychologists measure personality along five dimensions [New Sci.]
26. Natural Theory / C. Causation / 9. General Causation / c. Counterfactual causation
Why does an effect require a prior event if the prior event isn't a cause? [Bardon]
27. Natural Reality / A. Classical Physics / 1. Mechanics / d. Gravity
Gravity is unusual, in that it always attracts and never repels [New Sci.]
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / d. Entropy
Entropy is the only time-asymmetric law, so time may be linked to entropy [New Sci.]
Becoming disordered is much easier for a system than becoming ordered [Bardon]
27. Natural Reality / B. Modern Physics / 1. Relativity / b. General relativity
In the Big Bang general relativity fails, because gravity is too powerful [New Sci.]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Quantum electrodynamics incorporates special relativity and quantum mechanics [New Sci.]
Light moves at a constant space-time speed, but its direction is in neither space nor time [New Sci.]
Photons have zero rest mass, so virtual photons have infinite range [New Sci.]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
In the standard model all the fundamental force fields merge at extremely high energies [New Sci.]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Electrons move fast, so are subject to special relativity [New Sci.]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / d. Quantum mechanics
Quantum states are measured by external time, of unknown origin [New Sci.]
The Schrödinger equation describes the evolution of an object's wave function in Hilbert space [New Sci.]
27. Natural Reality / B. Modern Physics / 3. Chromodynamics / a. Chromodynamics
The strong force is repulsive at short distances, strong at medium, and fades at long [New Sci.]
Gluons, the particles carrying the strong force, interact because of their colour charge [New Sci.]
The strong force binds quarks tight, and the nucleus more weakly [New Sci.]
27. Natural Reality / B. Modern Physics / 3. Chromodynamics / b. Quarks
Three different colours of quark (as in the proton) can cancel out to give no colour [New Sci.]
Classifying hadrons revealed two symmetry patterns, produced by three basic elements [New Sci.]
Quarks in threes can build hadrons with spin ½ or with spin 3/2 [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / b. Standard model
The four fundamental forces (gravity, electromagnetism, weak and strong) are the effects of particles [New Sci.]
The weak force explains beta decay, and the change of type by quarks and leptons [New Sci.]
Three particles enable the weak force: W+ and W- are charged, and Z° is not [New Sci.]
The weak force particles are heavy, so the force has a short range [New Sci.]
Why do the charges of the very different proton and electron perfectly match up? [New Sci.]
The Standard Model cannot explain dark energy, survival of matter, gravity, or force strength [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / c. Particle properties
Spin is a built-in ration of angular momentum [New Sci.]
Quarks have red, green or blue colour charge (akin to electric charge) [New Sci.]
Fermions, with spin ½, are antisocial, and cannot share quantum states [New Sci.]
Spin is akin to rotation, and is easily measured in a magnetic field [New Sci.]
Particles are spread out, with wave-like properties, and higher energy shortens the wavelength [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / d. Mass
The mass of protons and neutrinos is mostly binding energy, not the quarks [New Sci.]
Gravitional mass turns out to be the same as inertial mass [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / e. Protons
Neutrons are slightly heavier than protons, and decay into them by emitting an electron [New Sci.]
Top, bottom, charm and strange quarks quickly decay into up and down [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / f. Neutrinos
Neutrinos were proposed as the missing energy in neutron beta decay [New Sci.]
Only neutrinos spin anticlockwise [New Sci.]
27. Natural Reality / B. Modern Physics / 4. Standard Model / g. Anti-matter
Standard antineutrinos have opposite spin and opposite lepton number [New Sci.]
27. Natural Reality / B. Modern Physics / 5. Unified Models / a. Electro-weak unity
The symmetry of unified electromagnetic and weak forces was broken by the Higgs field [New Sci.]
27. Natural Reality / B. Modern Physics / 5. Unified Models / b. String theory
It is impossible for find a model of actuality among the innumerable models in string theory [New Sci.]
String theory is now part of 11-dimensional M-Theory, involving p-branes [New Sci.]
In string theory space-time has a grainy indivisible substructure [New Sci.]
String theory needs at least 10 space-time dimensions [New Sci.]
Supersymmetric string theory can be expressed using loop quantum gravity [New Sci.]
String theory might be tested by colliding strings to make bigger 'stringballs' [New Sci.]
String theory offers a quantum theory of gravity, by describing the graviton [New Sci.]
27. Natural Reality / B. Modern Physics / 5. Unified Models / c. Supersymmetry
Only supersymmetry offers to incorporate gravity into the scheme [New Sci.]
Supersymmetry has extra heavy bosons and heavy fermions [New Sci.]
Supersymmetry says particles and superpartners were unities, but then split [New Sci.]
The evidence for supersymmetry keeps failing to appear [New Sci.]
27. Natural Reality / C. Space / 2. Space
Hilbert Space is an abstraction representing all possible states of a quantum system [New Sci.]
27. Natural Reality / C. Space / 4. Substantival Space
The Higgs field means even low energy space is not empty [New Sci.]
27. Natural Reality / C. Space / 6. Space-Time
Einstein's merging of time with space has left us confused about the nature of time [New Sci.]
Space-time may be a geometrical manifestation of quantum entanglement [New Sci.]
The universe expands, so space-time is enlarging [Bardon]
Relativity makes time and space jointly basic; quantum theory splits them, and prioritises time [New Sci.]
27. Natural Reality / D. Time / 1. Nature of Time / c. Idealist time
We should treat time as adverbial, so we don't experience time, we experience things temporally [Bardon, by Bardon]
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Quantum theory relies on a clock outside the system - but where is it located? [New Sci.]
27. Natural Reality / D. Time / 1. Nature of Time / i. Denying time
How can we question the passage of time, if the question takes time to ask? [Bardon]
27. Natural Reality / D. Time / 2. Passage of Time / b. Rate of time
What is time's passage relative to, and how fast does it pass? [Bardon]
27. Natural Reality / D. Time / 2. Passage of Time / e. Tensed (A) series
The A-series says a past event is becoming more past, but how can it do that? [Bardon]
27. Natural Reality / D. Time / 2. Passage of Time / f. Tenseless (B) series
The B-series needs a revised view of causes, laws and explanations [Bardon]
The B-series is realist about time, but idealist about its passage [Bardon]
The B-series adds directionality when it accepts 'earlier' and 'later' [Bardon]
27. Natural Reality / D. Time / 2. Passage of Time / g. Time's arrow
Entropy is puzzling, so we may need to build new laws which include time directionality [New Sci.]
To define time's arrow by causation, we need a timeless definition of causation [Bardon]
We judge memories to be of the past because the events cause the memories [Bardon]
The psychological arrow of time is the direction from our memories to our anticipations [Bardon]
The direction of entropy is probabilistic, not necessary, so cannot be identical to time's arrow [Bardon]
It is arbitrary to reverse time in a more orderly universe, but not in a sub-system of it [Bardon]
27. Natural Reality / D. Time / 2. Passage of Time / h. Change in time
It seems hard to understand change without understanding time first [Bardon]
We experience static states (while walking round a house) and observe change (ship leaving dock) [Bardon]
27. Natural Reality / D. Time / 2. Passage of Time / i. Time and motion
The motion of a thing should be a fact in the present moment [Bardon]
Experiences of motion may be overlapping, thus stretching out the experience [Bardon]
27. Natural Reality / D. Time / 2. Passage of Time / j. Time travel
At least eternal time gives time travellers a possible destination [Bardon]
Time travel is not a paradox if we include it in the eternal continuum of events [Bardon]
27. Natural Reality / D. Time / 3. Parts of Time / d. Measuring time
We use calendars for the order of events, and clocks for their passing [Bardon]
27. Natural Reality / E. Cosmology / 7. Black Holes
Black holes have entropy, but general relativity says they are unstructured, and lack entropy [New Sci.]
General relativity predicts black holes, as former massive stars, and as galaxy centres [New Sci.]
27. Natural Reality / E. Cosmology / 8. Dark Matter
Dark matter must have mass, to produce gravity, and no electric charge, to not reflect light [New Sci.]
84.5 percent of the universe is made of dark matter [New Sci.]
27. Natural Reality / F. Chemistry / 1. Chemistry
We are halfway to synthesising any molecule we want [New Sci.]
27. Natural Reality / F. Chemistry / 3. Periodic Table
Chemistry just needs the periodic table, and protons, electrons and neutrinos [New Sci.]
28. God / A. Divine Nature / 6. Divine Morality / b. Euthyphro question
Pythagoreans believe it is absurd to seek for goodness anywhere except with the gods [Iamblichus]