Combining Philosophers

All the ideas for Herodotus, ystein Linnebo and Shaughan Lavine

expand these ideas     |    start again     |     specify just one area for these philosophers


66 ideas

2. Reason / D. Definition / 12. Paraphrase
'Some critics admire only one another' cannot be paraphrased in singular first-order [Linnebo]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
A comprehension axiom is 'predicative' if the formula has no bound second-order variables [Linnebo]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory says any formula defines a set, and coextensive sets are identical [Linnebo]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
A 'pure logic' must be ontologically innocent, universal, and without presuppositions [Linnebo]
A pure logic is wholly general, purely formal, and directly known [Linnebo]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Plural quantification depends too heavily on combinatorial and set-theoretic considerations [Linnebo]
Second-order quantification and plural quantification are different [Linnebo]
Instead of complex objects like tables, plurally quantify over mereological atoms tablewise [Linnebo]
Traditionally we eliminate plurals by quantifying over sets [Linnebo]
Plural plurals are unnatural and need a first-level ontology [Linnebo]
Plural quantification may allow a monadic second-order theory with first-order ontology [Linnebo]
Can second-order logic be ontologically first-order, with all the benefits of second-order? [Linnebo]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
In classical semantics singular terms refer, and quantifiers range over domains [Linnebo]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The axioms of group theory are not assertions, but a definition of a structure [Linnebo]
To investigate axiomatic theories, mathematics needs its own foundational axioms [Linnebo]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
You can't prove consistency using a weaker theory, but you can use a consistent theory [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematics is the study of all possible patterns, and is thus bound to describe the world [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
'Deductivist' structuralism is just theories, with no commitment to objects, or modality [Linnebo]
Non-eliminative structuralism treats mathematical objects as positions in real abstract structures [Linnebo]
'Modal' structuralism studies all possible concrete models for various mathematical theories [Linnebo]
'Set-theoretic' structuralism treats mathematics as various structures realised among the sets [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Structuralism differs from traditional Platonism, because the objects depend ontologically on their structure [Linnebo]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Structuralism is right about algebra, but wrong about sets [Linnebo]
In mathematical structuralism the small depends on the large, which is the opposite of physical structures [Linnebo]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logical truth is true in all models, so mathematical objects can't be purely logical [Linnebo]
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Game Formalism has no semantics, and Term Formalism reduces the semantics [Linnebo]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
7. Existence / C. Structure of Existence / 4. Ontological Dependence
There may be a one-way direction of dependence among sets, and among natural numbers [Linnebo]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
We speak of a theory's 'ideological commitments' as well as its 'ontological commitments' [Linnebo]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
Ordinary speakers posit objects without concern for ontology [Linnebo]
8. Modes of Existence / B. Properties / 4. Intrinsic Properties
An 'intrinsic' property is either found in every duplicate, or exists independent of all externals [Linnebo]
9. Objects / A. Existence of Objects / 1. Physical Objects
The modern concept of an object is rooted in quantificational logic [Linnebo]
19. Language / C. Assigning Meanings / 3. Predicates
Predicates are 'distributive' or 'non-distributive'; do individuals do what the group does? [Linnebo]
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The Egyptians were the first to say the soul is immortal and reincarnated [Herodotus]