Combining Philosophers

All the ideas for Herodotus, A.George / D.J.Velleman and Robin Le Poidevin

expand these ideas     |    start again     |     specify just one area for these philosophers


90 ideas

2. Reason / D. Definition / 7. Contextual Definition
Contextual definitions replace a complete sentence containing the expression [George/Velleman]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions quantify over the thing being defined [George/Velleman]
3. Truth / B. Truthmakers / 10. Making Future Truths
In the tenseless view, all times are equally real, so statements of the future have truth-values [Le Poidevin]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'power set' of A is all the subsets of A [George/Velleman]
Cartesian Product A x B: the set of all ordered pairs in which a∈A and b∈B [George/Velleman]
The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}} [George/Velleman]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
Grouping by property is common in mathematics, usually using equivalence [George/Velleman]
'Equivalence' is a reflexive, symmetric and transitive relation; 'same first letter' partitions English words [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Even the elements of sets in ZFC are sets, resting on the pure empty set [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Axiom of Extensionality: for all sets x and y, if x and y have the same elements then x = y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Axiom of Pairing: for all sets x and y, there is a set z containing just x and y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
The Axiom of Reducibility made impredicative definitions possible [George/Velleman]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
ZFC can prove that there is no set corresponding to the concept 'set' [George/Velleman]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
As a reduction of arithmetic, set theory is not fully general, and so not logical [George/Velleman]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Asserting Excluded Middle is a hallmark of realism about the natural world [George/Velleman]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' is a meaning-assignment which makes all the axioms true [George/Velleman]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Differences between isomorphic structures seem unimportant [George/Velleman]
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is a purely syntactic property, unlike the semantic property of soundness [George/Velleman]
A 'consistent' theory cannot contain both a sentence and its negation [George/Velleman]
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness is a semantic property, unlike the purely syntactic property of consistency [George/Velleman]
5. Theory of Logic / K. Features of Logics / 4. Completeness
A 'complete' theory contains either any sentence or its negation [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Rational numbers give answers to division problems with integers [George/Velleman]
The integers are answers to subtraction problems involving natural numbers [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers provide answers to square root problems [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Logicists say mathematics is applicable because it is totally general [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The classical mathematician believes the real numbers form an actual set [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order induction is stronger as it covers all concepts, not just first-order definable ones [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The Incompleteness proofs use arithmetic to talk about formal arithmetic [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A successor is the union of a set with its singleton [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Frege's Theorem shows the Peano Postulates can be derived from Hume's Principle [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory can prove the Peano Postulates [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Talk of 'abstract entities' is more a label for the problem than a solution to it [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
If mathematics is not about particulars, observing particulars must be irrelevant [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
In the unramified theory of types, the types are objects, then sets of objects, sets of sets etc. [George/Velleman]
The theory of types seems to rule out harmless sets as well as paradoxical ones. [George/Velleman]
Type theory has only finitely many items at each level, which is a problem for mathematics [George/Velleman]
Type theory prohibits (oddly) a set containing an individual and a set of individuals [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Bounded quantification is originally finitary, as conjunctions and disjunctions [George/Velleman]
Much infinite mathematics can still be justified finitely [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
The intuitionists are the idealists of mathematics [George/Velleman]
Gödel's First Theorem suggests there are truths which are independent of proof [George/Velleman]
7. Existence / A. Nature of Existence / 3. Being / d. Non-being
A thing which makes no difference seems unlikely to exist [Le Poidevin]
14. Science / B. Scientific Theories / 2. Aim of Science
We want illuminating theories, rather than coherent theories [Le Poidevin]
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
In addition to causal explanations, they can also be inferential, or definitional, or purposive [Le Poidevin]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Corresponding to every concept there is a class (some of them sets) [George/Velleman]
19. Language / C. Assigning Meanings / 9. Indexical Semantics
We don't just describe a time as 'now' from a private viewpoint, but as a fact about the world [Le Poidevin]
22. Metaethics / B. Value / 2. Values / e. Death
It is disturbing if we become unreal when we die, but if time is unreal, then we remain real after death [Le Poidevin]
22. Metaethics / B. Value / 2. Values / j. Evil
Evil can't be an illusion, because then the illusion that there is evil would be evil [Le Poidevin]
23. Ethics / F. Existentialism / 1. Existentialism
Existentialism focuses on freedom and self-making, and insertion into the world [Le Poidevin]
26. Natural Theory / C. Causation / 1. Causation
The logical properties of causation are asymmetry, transitivity and irreflexivity [Le Poidevin]
27. Natural Reality / C. Space / 3. Points in Space
We can identify unoccupied points in space, so they must exist [Le Poidevin]
If spatial points exist, then they must be stationary, by definition [Le Poidevin]
27. Natural Reality / C. Space / 4. Substantival Space
Absolute space explains actual and potential positions, and geometrical truths [Le Poidevin]
27. Natural Reality / C. Space / 5. Relational Space
For relationists moving an object beyond the edge of space creates new space [Le Poidevin]
27. Natural Reality / C. Space / 6. Space-Time
We distinguish time from space, because it passes, and it has a unique present moment [Le Poidevin]
27. Natural Reality / D. Time / 1. Nature of Time / e. Eventless time
Temporal vacuums would be unexperienced, unmeasured, and unending [Le Poidevin]
Since nothing occurs in a temporal vacuum, there is no way to measure its length [Le Poidevin]
27. Natural Reality / D. Time / 1. Nature of Time / g. Growing block
If the future is not real, we don't seem to have any obligation to future individuals [Le Poidevin]
27. Natural Reality / D. Time / 1. Nature of Time / h. Presentism
If things don't persist through time, then change makes no sense [Le Poidevin]
27. Natural Reality / D. Time / 2. Passage of Time / b. Rate of time
Time can't speed up or slow down, so it doesn't seem to be a 'process' [Le Poidevin]
27. Natural Reality / D. Time / 2. Passage of Time / c. Tenses and time
At the very least, minds themselves seem to be tensed [Le Poidevin]
Fiction seems to lack a tensed perspective, and offers an example of tenseless language [Le Poidevin]
It is the view of the future that really decides between tensed and tenseless views of time [Le Poidevin]
27. Natural Reality / D. Time / 2. Passage of Time / d. Time series
In the B-series, time-positions are unchanging; in the A-series they change (from future to present to past) [Le Poidevin]
Things which have ceased change their A-series position; things that persist change their B-series position [Le Poidevin]
A-theory says past, present, future and flow exist; B-theory says this just reports our perspective [Le Poidevin]
27. Natural Reality / D. Time / 2. Passage of Time / e. Tensed (A) series
It is claimed that the tense view entails the unreality of both future and past [Le Poidevin]
Tensed theorists typically try to reduce the tenseless to the tensed [Le Poidevin]
We share a common now, but not a common here [Le Poidevin]
27. Natural Reality / D. Time / 2. Passage of Time / f. Tenseless (B) series
The B-series doesn't seem to allow change [Le Poidevin]
If the B-universe is eternal, why am I trapped in a changing moment of it? [Le Poidevin]
The new tenseless theory offers indexical truth-conditions, instead of a reductive analysis [Le Poidevin]
To say that the past causes the present needs them both to be equally real [Le Poidevin]
27. Natural Reality / D. Time / 2. Passage of Time / g. Time's arrow
An ordered series can be undirected, but time favours moving from earlier to later [Le Poidevin]
If time's arrow is causal, how can there be non-simultaneous events that are causally unconnected? [Le Poidevin]
Time's arrow is not causal if there is no temporal gap between cause and effect [Le Poidevin]
If time's arrow is psychological then different minds can impose different orders on events [Le Poidevin]
There are Thermodynamic, Psychological and Causal arrows of time [Le Poidevin]
Presumably if time's arrow is thermodynamic then time ends when entropy is complete [Le Poidevin]
If time is thermodynamic then entropy is necessary - but the theory says it is probable [Le Poidevin]
27. Natural Reality / D. Time / 2. Passage of Time / i. Time and motion
Instantaneous motion is an intrinsic disposition to be elsewhere [Le Poidevin]
The dynamic view of motion says it is primitive, and not reducible to objects, properties and times [Le Poidevin]
27. Natural Reality / D. Time / 2. Passage of Time / k. Temporal truths
If the present could have diverse pasts, then past truths can't have present truthmakers [Le Poidevin]
27. Natural Reality / D. Time / 3. Parts of Time / a. Beginning of time
The present is the past/future boundary, so the first moment of time was not present [Le Poidevin]
27. Natural Reality / D. Time / 3. Parts of Time / c. Intervals
The primitive parts of time are intervals, not instants [Le Poidevin]
27. Natural Reality / D. Time / 3. Parts of Time / e. Present moment
If time is infinitely divisible, then the present must be infinitely short [Le Poidevin]
27. Natural Reality / E. Cosmology / 10. Multiverse
The multiverse is distinct time-series, as well as spaces [Le Poidevin]
28. God / A. Divine Nature / 5. God and Time
God being inside or outside of time both raise a group of difficult problems [Le Poidevin]
How could a timeless God know what time it is? So could God be both timeless and omniscient? [Le Poidevin]
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The Egyptians were the first to say the soul is immortal and reincarnated [Herodotus]