Combining Philosophers

All the ideas for H.Putnam/P.Oppenheim, Frank Close and Ernst Zermelo

expand these ideas     |    start again     |     specify just one area for these philosophers


40 ideas

2. Reason / D. Definition / 8. Impredicative Definition
Predicative definitions are acceptable in mathematics if they distinguish objects, rather than creating them? [Zermelo, by Lavine]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
We take set theory as given, and retain everything valuable, while avoiding contradictions [Zermelo]
Set theory investigates number, order and function, showing logical foundations for mathematics [Zermelo]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC: Existence, Extension, Specification, Pairing, Unions, Powers, Infinity, Choice [Zermelo, by Clegg]
Zermelo published his axioms in 1908, to secure a controversial proof [Zermelo, by Maddy]
Set theory can be reduced to a few definitions and seven independent axioms [Zermelo]
Zermelo made 'set' and 'member' undefined axioms [Zermelo, by Chihara]
For Zermelo's set theory the empty set is zero and the successor of each number is its unit set [Zermelo, by Blackburn]
Zermelo showed that the ZF axioms in 1930 were non-categorical [Zermelo, by Hallett,M]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Zermelo introduced Pairing in 1930, and it seems fairly obvious [Zermelo, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was added when some advanced theorems seemed to need it [Zermelo, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Zermelo used Foundation to block paradox, but then decided that only Separation was needed [Zermelo, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / m. Axiom of Separation
Not every predicate has an extension, but Separation picks the members that satisfy a predicate [Zermelo, by Hart,WD]
The Axiom of Separation requires set generation up to one step back from contradiction [Zermelo, by Maddy]
5. Theory of Logic / L. Paradox / 3. Antinomies
The antinomy of endless advance and of completion is resolved in well-ordered transfinite numbers [Zermelo]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
In ZF, the Burali-Forti Paradox proves that there is no set of all ordinals [Zermelo, by Hart,WD]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / e. Countable infinity
Zermelo realised that Choice would facilitate the sort of 'counting' Cantor needed [Zermelo, by Lavine]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
For Zermelo the successor of n is {n} (rather than n U {n}) [Zermelo, by Maddy]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Zermelo believed, and Von Neumann seemed to confirm, that numbers are sets [Zermelo, by Maddy]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Different versions of set theory result in different underlying structures for numbers [Zermelo, by Brown,JR]
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
Six reduction levels: groups, lives, cells, molecules, atoms, particles [Putnam/Oppenheim, by Watson]
18. Thought / A. Modes of Thought / 6. Judgement / a. Nature of Judgement
We should judge principles by the science, not science by some fixed principles [Zermelo]
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / b. Heat
Work degrades into heat, but not vice versa [Close]
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / c. Conservation of energy
First Law: energy can change form, but is conserved overall [Close]
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / d. Entropy
Third Law: total order and minimum entropy only occurs at absolute zero [Close]
27. Natural Reality / B. Modern Physics / 1. Relativity / a. Special relativity
All motions are relative and ambiguous, but acceleration is the same in all inertial frames [Close]
The electric and magnetic are tightly linked, and viewed according to your own motion [Close]
27. Natural Reality / B. Modern Physics / 1. Relativity / b. General relativity
The general relativity equations relate curvature in space-time to density of energy-momentum [Close]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Electric fields have four basic laws (two by Gauss, one by Ampère, one by Faraday) [Close]
Light isn't just emitted in quanta called photons - light is photons [Close]
In general relativity the energy and momentum of photons subjects them to gravity [Close]
Electro-magnetic waves travel at light speed - so light is electromagnetism! [Close]
In QED, electro-magnetism exists in quantum states, emitting and absorbing electrons [Close]
Photon exchange drives the electro-magnetic force [Close]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
Quantum fields contain continual rapid creation and disappearance [Close]
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Dirac showed how electrons conform to special relativity [Close]
Electrons get their mass by interaction with the Higgs field [Close]
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
Modern theories of matter are grounded in heat, work and energy [Close]
27. Natural Reality / B. Modern Physics / 5. Unified Models / a. Electro-weak unity
The Higgs field is an electroweak plasma - but we don't know what stuff it consists of [Close]
27. Natural Reality / C. Space / 6. Space-Time
Space-time is indeterminate foam over short distances [Close]