Combining Philosophers

All the ideas for Eubulides, Robert Kirk and Graham Priest

expand these ideas     |    start again     |     specify just one area for these philosophers


55 ideas

2. Reason / B. Laws of Thought / 3. Non-Contradiction
Someone standing in a doorway seems to be both in and not-in the room [Priest,G, by Sorensen]
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
A logic is 'relevant' if premise and conclusion are connected, and 'paraconsistent' allows contradictions [Priest,G, by Friend]
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic is one of the few first-order non-classical logics [Priest,G]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets [Priest,G]
<a,b&62; is a set whose members occur in the order shown [Priest,G]
a ∈ X says a is an object in set X; a ∉ X says a is not in X [Priest,G]
{x; A(x)} is a set of objects satisfying the condition A(x) [Priest,G]
{a1, a2, ...an} indicates that a set comprising just those objects [Priest,G]
Φ indicates the empty set, which has no members [Priest,G]
{a} is the 'singleton' set of a (not the object a itself) [Priest,G]
X⊂Y means set X is a 'proper subset' of set Y [Priest,G]
X⊆Y means set X is a 'subset' of set Y [Priest,G]
X = Y means the set X equals the set Y [Priest,G]
X ∩ Y indicates the 'intersection' of sets X and Y, the objects which are in both sets [Priest,G]
X∪Y indicates the 'union' of all the things in sets X and Y [Priest,G]
Y - X is the 'relative complement' of X with respect to Y; the things in Y that are not in X [Priest,G]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'relative complement' is things in the second set not in the first [Priest,G]
The 'intersection' of two sets is a set of the things that are in both sets [Priest,G]
The 'union' of two sets is a set containing all the things in either of the sets [Priest,G]
The 'induction clause' says complex formulas retain the properties of their basic formulas [Priest,G]
An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order [Priest,G]
A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets [Priest,G]
A 'set' is a collection of objects [Priest,G]
The 'empty set' or 'null set' has no members [Priest,G]
A set is a 'subset' of another set if all of its members are in that set [Priest,G]
A 'proper subset' is smaller than the containing set [Priest,G]
A 'singleton' is a set with only one member [Priest,G]
A 'member' of a set is one of the objects in the set [Priest,G]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
The empty set Φ is a subset of every set (including itself) [Priest,G]
5. Theory of Logic / L. Paradox / 1. Paradox
If you know your father, but don't recognise your father veiled, you know and don't know the same person [Eubulides, by Dancy,R]
Typically, paradoxes are dealt with by dividing them into two groups, but the division is wrong [Priest,G]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / b. König's paradox
The 'least indefinable ordinal' is defined by that very phrase [Priest,G]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
'x is a natural number definable in less than 19 words' leads to contradiction [Priest,G]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / d. Richard's paradox
By diagonalization we can define a real number that isn't in the definable set of reals [Priest,G]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The least ordinal greater than the set of all ordinals is both one of them and not one of them [Priest,G]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The next set up in the hierarchy of sets seems to be both a member and not a member of it [Priest,G]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If you know that a sentence is not one of the known sentences, you know its truth [Priest,G]
There are Liar Pairs, and Liar Chains, which fit the same pattern as the basic Liar [Priest,G]
If you say truly that you are lying, you are lying [Eubulides, by Dancy,R]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / b. The Heap paradox ('Sorites')
Removing one grain doesn't destroy a heap, so a heap can't be destroyed [Eubulides, by Dancy,R]
7. Existence / C. Structure of Existence / 2. Reduction
A weaker kind of reductionism than direct translation is the use of 'bridge laws' [Kirk,R]
15. Nature of Minds / B. Features of Minds / 1. Consciousness / c. Parts of consciousness
Maybe we should see intentionality and consciousness as a single problem, not two [Kirk,R]
15. Nature of Minds / B. Features of Minds / 4. Intentionality / a. Nature of intentionality
If a bird captures a worm, we could say its behaviour is 'about' the worm [Kirk,R]
15. Nature of Minds / B. Features of Minds / 4. Intentionality / b. Intentionality theories
Behaviourism says intentionality is an external relation; language of thought says it's internal [Kirk,R]
17. Mind and Body / A. Mind-Body Dualism / 8. Dualism of Mind Critique
Dualism implies some brain events with no physical cause, and others with no physical effect [Kirk,R]
17. Mind and Body / B. Behaviourism / 1. Behaviourism
Behaviourism seems a good theory for intentional states, but bad for phenomenal ones [Kirk,R]
Behaviourism offers a good alternative to simplistic unitary accounts of mental relationships [Kirk,R]
17. Mind and Body / B. Behaviourism / 2. Potential Behaviour
In 'holistic' behaviourism we say a mental state is a complex of many dispositions [Kirk,R]
17. Mind and Body / B. Behaviourism / 4. Behaviourism Critique
The inverted spectrum idea is often regarded as an objection to behaviourism [Kirk,R]
17. Mind and Body / E. Mind as Physical / 3. Eliminativism
All meaningful psychological statements can be translated into physics [Kirk,R]
17. Mind and Body / E. Mind as Physical / 4. Connectionism
Instead of representation by sentences, it can be by a distribution of connectionist strengths [Kirk,R]
17. Mind and Body / E. Mind as Physical / 7. Anti-Physicalism / b. Multiple realisability
If mental states are multiply realisable, they could not be translated into physical terms [Kirk,R]
18. Thought / D. Concepts / 2. Origin of Concepts / c. Nativist concepts
It seems unlikely that most concepts are innate, if a theory must be understood to grasp them [Kirk,R]
19. Language / A. Nature of Meaning / 5. Meaning as Verification
For behaviourists language is just a special kind of behaviour [Kirk,R]
19. Language / B. Reference / 1. Reference theories
Behaviourists doubt whether reference is a single type of relation [Kirk,R]