Combining Philosophers

All the ideas for Eubulides, Kurt Gdel and Joseph Melia

expand these ideas     |    start again     |     specify just one area for these philosophers


60 ideas

2. Reason / A. Nature of Reason / 1. On Reason
For clear questions posed by reason, reason can also find clear answers [Gödel]
Consistency is modal, saying propositions are consistent if they could be true together [Melia]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative Definitions refer to the totality to which the object itself belongs [Gödel]
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Prior to Gödel we thought truth in mathematics consisted in provability [Gödel, by Quine]
4. Formal Logic / C. Predicate Calculus PC / 1. Predicate Calculus PC
Predicate logic has connectives, quantifiers, variables, predicates, equality, names and brackets [Melia]
4. Formal Logic / C. Predicate Calculus PC / 3. Completeness of PC
Gödel proved the completeness of first order predicate logic in 1930 [Gödel, by Walicki]
4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
First-order predicate calculus is extensional logic, but quantified modal logic is intensional (hence dubious) [Melia]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We perceive the objects of set theory, just as we perceive with our senses [Gödel]
Gödel show that the incompleteness of set theory was a necessity [Gödel, by Hallett,M]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Gödel proved the classical relative consistency of the axiom V = L [Gödel, by Putnam]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
In simple type theory the axiom of Separation is better than Reducibility [Gödel, by Linsky,B]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Gödel proved that first-order logic is complete, and second-order logic incomplete [Gödel, by Dummett]
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Mathematical Logic is a non-numerical branch of mathematics, and the supreme science [Gödel]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Reference to a totality need not refer to a conjunction of all its elements [Gödel]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order logic needs second-order variables and quantification into predicate position [Melia]
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
Originally truth was viewed with total suspicion, and only demonstrability was accepted [Gödel]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
If every model that makes premises true also makes conclusion true, the argument is valid [Melia]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The limitations of axiomatisation were revealed by the incompleteness theorems [Gödel, by Koellner]
5. Theory of Logic / K. Features of Logics / 2. Consistency
Second Incompleteness: nice theories can't prove their own consistency [Gödel, by Smith,P]
5. Theory of Logic / K. Features of Logics / 3. Soundness
If soundness can't be proved internally, 'reflection principles' can be added to assert soundness [Gödel, by Halbach/Leigh]
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Gödel's Theorems did not refute the claim that all good mathematical questions have answers [Gödel, by Koellner]
Gödel's First Theorem sabotages logicism, and the Second sabotages Hilbert's Programme [Smith,P on Gödel]
The undecidable sentence can be decided at a 'higher' level in the system [Gödel]
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A logical system needs a syntactical survey of all possible expressions [Gödel]
5. Theory of Logic / L. Paradox / 1. Paradox
If you know your father, but don't recognise your father veiled, you know and don't know the same person [Eubulides, by Dancy,R]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
Set-theory paradoxes are no worse than sense deception in physics [Gödel]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If you say truly that you are lying, you are lying [Eubulides, by Dancy,R]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / b. The Heap paradox ('Sorites')
Removing one grain doesn't destroy a heap, so a heap can't be destroyed [Eubulides, by Dancy,R]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
There can be no single consistent theory from which all mathematical truths can be derived [Gödel, by George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The generalized Continuum Hypothesis asserts a discontinuity in cardinal numbers [Gödel]
The Continuum Hypothesis is not inconsistent with the axioms of set theory [Gödel, by Clegg]
If set theory is consistent, we cannot refute or prove the Continuum Hypothesis [Gödel, by Hart,WD]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Gödel eventually hoped for a generalised completeness theorem leaving nothing undecidable [Gödel, by Koellner]
The real reason for Incompleteness in arithmetic is inability to define truth in a language [Gödel]
Gödel showed that arithmetic is either incomplete or inconsistent [Gödel, by Rey]
First Incompleteness: arithmetic must always be incomplete [Gödel, by Smith,P]
Arithmetical truth cannot be fully and formally derived from axioms and inference rules [Gödel, by Nagel/Newman]
Gödel's Second says that semantic consequence outruns provability [Gödel, by Hanna]
First Incompleteness: a decent consistent system is syntactically incomplete [Gödel, by George/Velleman]
Second Incompleteness: a decent consistent system can't prove its own consistency [Gödel, by George/Velleman]
There is a sentence which a theory can show is true iff it is unprovable [Gödel, by Smith,P]
'This system can't prove this statement' makes it unprovable either way [Gödel, by Clegg]
Some arithmetical problems require assumptions which transcend arithmetic [Gödel]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Mathematical objects are as essential as physical objects are for perception [Gödel]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Basic mathematics is related to abstract elements of our empirical ideas [Gödel]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Impredicative definitions are admitted into ordinary mathematics [Gödel]
Realists are happy with impredicative definitions, which describe entities in terms of other existing entities [Gödel, by Shapiro]
7. Existence / D. Theories of Reality / 8. Facts / a. Facts
No sort of plain language or levels of logic can express modal facts properly [Melia]
Maybe names and predicates can capture any fact [Melia]
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Identity of Indiscernibles is contentious for qualities, and trivial for non-qualities [Melia]
10. Modality / A. Necessity / 2. Nature of Necessity
We may be sure that P is necessary, but is it necessarily necessary? [Melia]
10. Modality / A. Necessity / 4. De re / De dicto modality
'De re' modality is about things themselves, 'de dicto' modality is about propositions [Melia]
10. Modality / B. Possibility / 1. Possibility
Sometimes we want to specify in what ways a thing is possible [Melia]
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
Possible worlds make it possible to define necessity and counterfactuals without new primitives [Melia]
In possible worlds semantics the modal operators are treated as quantifiers [Melia]
If possible worlds semantics is not realist about possible worlds, logic becomes merely formal [Melia]
Possible worlds could be real as mathematics, propositions, properties, or like books [Melia]
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / b. Worlds as fictions
The truth of propositions at possible worlds are implied by the world, just as in books [Melia]
17. Mind and Body / C. Functionalism / 2. Machine Functionalism
Basic logic can be done by syntax, with no semantics [Gödel, by Rey]
19. Language / A. Nature of Meaning / 5. Meaning as Verification
We accept unverifiable propositions because of simplicity, utility, explanation and plausibility [Melia]