Combining Philosophers

All the ideas for Eubulides, John P. Burgess and E Reck / M Price

expand these ideas     |    start again     |     specify just one area for these philosophers


55 ideas

3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
With four tense operators, all complex tenses reduce to fourteen basic cases [Burgess]
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The temporal Barcan formulas fix what exists, which seems absurd [Burgess]
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Is classical logic a part of intuitionist logic, or vice versa? [Burgess]
It is still unsettled whether standard intuitionist logic is complete [Burgess]
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
Relevance logic's → is perhaps expressible by 'if A, then B, for that reason' [Burgess]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
Technical people see logic as any formal system that can be studied, not a study of argument validity [Burgess]
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic neglects the non-mathematical, such as temporality or modality [Burgess]
The Cut Rule expresses the classical idea that entailment is transitive [Burgess]
Classical logic neglects counterfactuals, temporality and modality, because maths doesn't use them [Burgess]
5. Theory of Logic / A. Overview of Logic / 9. Philosophical Logic
Philosophical logic is a branch of logic, and is now centred in computer science [Burgess]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Formalising arguments favours lots of connectives; proving things favours having very few [Burgess]
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / e. or
Asserting a disjunction from one disjunct seems odd, but can be sensible, and needed in maths [Burgess]
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
All occurrences of variables in atomic formulas are free [Burgess]
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
The denotation of a definite description is flexible, rather than rigid [Burgess]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
'Induction' and 'recursion' on complexity prove by connecting a formula to its atomic components [Burgess]
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
We can build one expanding sequence, instead of a chain of deductions [Burgess]
The sequent calculus makes it possible to have proof without transitivity of entailment [Burgess]
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
'Tautologies' are valid formulas of classical sentential logic - or substitution instances in other logics [Burgess]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Validity (for truth) and demonstrability (for proof) have correlates in satisfiability and consistency [Burgess]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Models leave out meaning, and just focus on truth values [Burgess]
We only need to study mathematical models, since all other models are isomorphic to these [Burgess]
We aim to get the technical notion of truth in all models matching intuitive truth in all instances [Burgess]
5. Theory of Logic / L. Paradox / 1. Paradox
If you know your father, but don't recognise your father veiled, you know and don't know the same person [Eubulides, by Dancy,R]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If you say truly that you are lying, you are lying [Eubulides, by Dancy,R]
The Liar seems like a truth-value 'gap', but dialethists see it as a 'glut' [Burgess]
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / b. The Heap paradox ('Sorites')
Removing one grain doesn't destroy a heap, so a heap can't be destroyed [Eubulides, by Dancy,R]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is the standard background for modern mathematics [Burgess]
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralists take the name 'R' of the reals to be a variable ranging over structures, not a structure [Burgess]
There is no one relation for the real number 2, as relations differ in different models [Burgess]
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If set theory is used to define 'structure', we can't define set theory structurally [Burgess]
Abstract algebra concerns relations between models, not common features of all the models [Burgess]
How can mathematical relations be either internal, or external, or intrinsic? [Burgess]
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
10. Modality / A. Necessity / 4. De re / De dicto modality
De re modality seems to apply to objects a concept intended for sentences [Burgess]
10. Modality / A. Necessity / 6. Logical Necessity
General consensus is S5 for logical modality of validity, and S4 for proof [Burgess]
Logical necessity has two sides - validity and demonstrability - which coincide in classical logic [Burgess]
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
Three conditionals theories: Materialism (material conditional), Idealism (true=assertable), Nihilism (no truth) [Burgess]
It is doubtful whether the negation of a conditional has any clear meaning [Burgess]